MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ituniiun Structured version   Visualization version   GIF version

Theorem ituniiun 10375
Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
ituniiun (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑎   𝑥,𝐵,𝑦,𝑎   𝑈,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑎)

Proof of Theorem ituniiun
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
21fveq1d 6860 . . 3 (𝑏 = 𝐴 → ((𝑈𝑏)‘suc 𝐵) = ((𝑈𝐴)‘suc 𝐵))
3 iuneq1 4972 . . 3 (𝑏 = 𝐴 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
42, 3eqeq12d 2745 . 2 (𝑏 = 𝐴 → (((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵) ↔ ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵)))
5 suceq 6400 . . . . . 6 (𝑑 = ∅ → suc 𝑑 = suc ∅)
65fveq2d 6862 . . . . 5 (𝑑 = ∅ → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc ∅))
7 fveq2 6858 . . . . . 6 (𝑑 = ∅ → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘∅))
87iuneq2d 4986 . . . . 5 (𝑑 = ∅ → 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘∅))
96, 8eqeq12d 2745 . . . 4 (𝑑 = ∅ → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)))
10 suceq 6400 . . . . . 6 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1110fveq2d 6862 . . . . 5 (𝑑 = 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝑐))
12 fveq2 6858 . . . . . 6 (𝑑 = 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝑐))
1312iuneq2d 4986 . . . . 5 (𝑑 = 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
1411, 13eqeq12d 2745 . . . 4 (𝑑 = 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)))
15 suceq 6400 . . . . . 6 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1615fveq2d 6862 . . . . 5 (𝑑 = suc 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc suc 𝑐))
17 fveq2 6858 . . . . . 6 (𝑑 = suc 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘suc 𝑐))
1817iuneq2d 4986 . . . . 5 (𝑑 = suc 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
1916, 18eqeq12d 2745 . . . 4 (𝑑 = suc 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
20 suceq 6400 . . . . . 6 (𝑑 = 𝐵 → suc 𝑑 = suc 𝐵)
2120fveq2d 6862 . . . . 5 (𝑑 = 𝐵 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝐵))
22 fveq2 6858 . . . . . 6 (𝑑 = 𝐵 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝐵))
2322iuneq2d 4986 . . . . 5 (𝑑 = 𝐵 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
2421, 23eqeq12d 2745 . . . 4 (𝑑 = 𝐵 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)))
25 uniiun 5022 . . . . 5 𝑏 = 𝑎𝑏 𝑎
26 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
2726itunisuc 10372 . . . . . 6 ((𝑈𝑏)‘suc ∅) = ((𝑈𝑏)‘∅)
2826ituni0 10371 . . . . . . . 8 (𝑏 ∈ V → ((𝑈𝑏)‘∅) = 𝑏)
2928elv 3452 . . . . . . 7 ((𝑈𝑏)‘∅) = 𝑏
3029unieqi 4883 . . . . . 6 ((𝑈𝑏)‘∅) = 𝑏
3127, 30eqtri 2752 . . . . 5 ((𝑈𝑏)‘suc ∅) = 𝑏
3226ituni0 10371 . . . . . 6 (𝑎𝑏 → ((𝑈𝑎)‘∅) = 𝑎)
3332iuneq2i 4977 . . . . 5 𝑎𝑏 ((𝑈𝑎)‘∅) = 𝑎𝑏 𝑎
3425, 31, 333eqtr4i 2762 . . . 4 ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)
3526itunisuc 10372 . . . . . 6 ((𝑈𝑏)‘suc suc 𝑐) = ((𝑈𝑏)‘suc 𝑐)
36 unieq 4882 . . . . . . 7 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
3726itunisuc 10372 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
3837a1i 11 . . . . . . . . 9 (𝑎𝑏 → ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐))
3938iuneq2i 4977 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
40 iuncom4 4964 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
4139, 40eqtr2i 2753 . . . . . . 7 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)
4236, 41eqtrdi 2780 . . . . . 6 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4335, 42eqtrid 2776 . . . . 5 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4443a1i 11 . . . 4 (𝑐 ∈ ω → (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
459, 14, 19, 24, 34, 44finds 7872 . . 3 (𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
46 iun0 5026 . . . . 5 𝑎𝑏 ∅ = ∅
4746eqcomi 2738 . . . 4 ∅ = 𝑎𝑏
48 peano2b 7859 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
49 vex 3451 . . . . . . . 8 𝑏 ∈ V
5026itunifn 10370 . . . . . . . 8 (𝑏 ∈ V → (𝑈𝑏) Fn ω)
51 fndm 6621 . . . . . . . 8 ((𝑈𝑏) Fn ω → dom (𝑈𝑏) = ω)
5249, 50, 51mp2b 10 . . . . . . 7 dom (𝑈𝑏) = ω
5352eleq2i 2820 . . . . . 6 (suc 𝐵 ∈ dom (𝑈𝑏) ↔ suc 𝐵 ∈ ω)
5448, 53bitr4i 278 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ dom (𝑈𝑏))
55 ndmfv 6893 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝑏) → ((𝑈𝑏)‘suc 𝐵) = ∅)
5654, 55sylnbi 330 . . . 4 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = ∅)
57 vex 3451 . . . . . . . 8 𝑎 ∈ V
5826itunifn 10370 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
59 fndm 6621 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
6057, 58, 59mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
6160eleq2i 2820 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
62 ndmfv 6893 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
6361, 62sylnbir 331 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
6463iuneq2d 4986 . . . 4 𝐵 ∈ ω → 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝑏 ∅)
6547, 56, 643eqtr4a 2790 . . 3 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
6645, 65pm2.61i 182 . 2 ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)
674, 66vtoclg 3520 1 (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296   cuni 4871   ciun 4955  cmpt 5188  dom cdm 5638  cres 5640  suc csuc 6334   Fn wfn 6506  cfv 6511  ωcom 7842  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by:  hsmexlem4  10382
  Copyright terms: Public domain W3C validator