MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ituniiun Structured version   Visualization version   GIF version

Theorem ituniiun 10310
Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
ituniiun (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑎   𝑥,𝐵,𝑦,𝑎   𝑈,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑎)

Proof of Theorem ituniiun
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
21fveq1d 6824 . . 3 (𝑏 = 𝐴 → ((𝑈𝑏)‘suc 𝐵) = ((𝑈𝐴)‘suc 𝐵))
3 iuneq1 4958 . . 3 (𝑏 = 𝐴 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
42, 3eqeq12d 2747 . 2 (𝑏 = 𝐴 → (((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵) ↔ ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵)))
5 suceq 6374 . . . . . 6 (𝑑 = ∅ → suc 𝑑 = suc ∅)
65fveq2d 6826 . . . . 5 (𝑑 = ∅ → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc ∅))
7 fveq2 6822 . . . . . 6 (𝑑 = ∅ → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘∅))
87iuneq2d 4972 . . . . 5 (𝑑 = ∅ → 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘∅))
96, 8eqeq12d 2747 . . . 4 (𝑑 = ∅ → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)))
10 suceq 6374 . . . . . 6 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1110fveq2d 6826 . . . . 5 (𝑑 = 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝑐))
12 fveq2 6822 . . . . . 6 (𝑑 = 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝑐))
1312iuneq2d 4972 . . . . 5 (𝑑 = 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
1411, 13eqeq12d 2747 . . . 4 (𝑑 = 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)))
15 suceq 6374 . . . . . 6 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1615fveq2d 6826 . . . . 5 (𝑑 = suc 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc suc 𝑐))
17 fveq2 6822 . . . . . 6 (𝑑 = suc 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘suc 𝑐))
1817iuneq2d 4972 . . . . 5 (𝑑 = suc 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
1916, 18eqeq12d 2747 . . . 4 (𝑑 = suc 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
20 suceq 6374 . . . . . 6 (𝑑 = 𝐵 → suc 𝑑 = suc 𝐵)
2120fveq2d 6826 . . . . 5 (𝑑 = 𝐵 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝐵))
22 fveq2 6822 . . . . . 6 (𝑑 = 𝐵 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝐵))
2322iuneq2d 4972 . . . . 5 (𝑑 = 𝐵 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
2421, 23eqeq12d 2747 . . . 4 (𝑑 = 𝐵 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)))
25 uniiun 5007 . . . . 5 𝑏 = 𝑎𝑏 𝑎
26 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
2726itunisuc 10307 . . . . . 6 ((𝑈𝑏)‘suc ∅) = ((𝑈𝑏)‘∅)
2826ituni0 10306 . . . . . . . 8 (𝑏 ∈ V → ((𝑈𝑏)‘∅) = 𝑏)
2928elv 3441 . . . . . . 7 ((𝑈𝑏)‘∅) = 𝑏
3029unieqi 4871 . . . . . 6 ((𝑈𝑏)‘∅) = 𝑏
3127, 30eqtri 2754 . . . . 5 ((𝑈𝑏)‘suc ∅) = 𝑏
3226ituni0 10306 . . . . . 6 (𝑎𝑏 → ((𝑈𝑎)‘∅) = 𝑎)
3332iuneq2i 4963 . . . . 5 𝑎𝑏 ((𝑈𝑎)‘∅) = 𝑎𝑏 𝑎
3425, 31, 333eqtr4i 2764 . . . 4 ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)
3526itunisuc 10307 . . . . . 6 ((𝑈𝑏)‘suc suc 𝑐) = ((𝑈𝑏)‘suc 𝑐)
36 unieq 4870 . . . . . . 7 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
3726itunisuc 10307 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
3837a1i 11 . . . . . . . . 9 (𝑎𝑏 → ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐))
3938iuneq2i 4963 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
40 iuncom4 4950 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
4139, 40eqtr2i 2755 . . . . . . 7 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)
4236, 41eqtrdi 2782 . . . . . 6 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4335, 42eqtrid 2778 . . . . 5 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4443a1i 11 . . . 4 (𝑐 ∈ ω → (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
459, 14, 19, 24, 34, 44finds 7826 . . 3 (𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
46 iun0 5010 . . . . 5 𝑎𝑏 ∅ = ∅
4746eqcomi 2740 . . . 4 ∅ = 𝑎𝑏
48 peano2b 7813 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
49 vex 3440 . . . . . . . 8 𝑏 ∈ V
5026itunifn 10305 . . . . . . . 8 (𝑏 ∈ V → (𝑈𝑏) Fn ω)
51 fndm 6584 . . . . . . . 8 ((𝑈𝑏) Fn ω → dom (𝑈𝑏) = ω)
5249, 50, 51mp2b 10 . . . . . . 7 dom (𝑈𝑏) = ω
5352eleq2i 2823 . . . . . 6 (suc 𝐵 ∈ dom (𝑈𝑏) ↔ suc 𝐵 ∈ ω)
5448, 53bitr4i 278 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ dom (𝑈𝑏))
55 ndmfv 6854 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝑏) → ((𝑈𝑏)‘suc 𝐵) = ∅)
5654, 55sylnbi 330 . . . 4 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = ∅)
57 vex 3440 . . . . . . . 8 𝑎 ∈ V
5826itunifn 10305 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
59 fndm 6584 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
6057, 58, 59mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
6160eleq2i 2823 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
62 ndmfv 6854 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
6361, 62sylnbir 331 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
6463iuneq2d 4972 . . . 4 𝐵 ∈ ω → 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝑏 ∅)
6547, 56, 643eqtr4a 2792 . . 3 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
6645, 65pm2.61i 182 . 2 ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)
674, 66vtoclg 3509 1 (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283   cuni 4859   ciun 4941  cmpt 5172  dom cdm 5616  cres 5618  suc csuc 6308   Fn wfn 6476  cfv 6481  ωcom 7796  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  hsmexlem4  10317
  Copyright terms: Public domain W3C validator