MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ituniiun Structured version   Visualization version   GIF version

Theorem ituniiun 10109
Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
ituniiun (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑎   𝑥,𝐵,𝑦,𝑎   𝑈,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑎)

Proof of Theorem ituniiun
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
21fveq1d 6758 . . 3 (𝑏 = 𝐴 → ((𝑈𝑏)‘suc 𝐵) = ((𝑈𝐴)‘suc 𝐵))
3 iuneq1 4937 . . 3 (𝑏 = 𝐴 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
42, 3eqeq12d 2754 . 2 (𝑏 = 𝐴 → (((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵) ↔ ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵)))
5 suceq 6316 . . . . . 6 (𝑑 = ∅ → suc 𝑑 = suc ∅)
65fveq2d 6760 . . . . 5 (𝑑 = ∅ → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc ∅))
7 fveq2 6756 . . . . . 6 (𝑑 = ∅ → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘∅))
87iuneq2d 4950 . . . . 5 (𝑑 = ∅ → 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘∅))
96, 8eqeq12d 2754 . . . 4 (𝑑 = ∅ → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)))
10 suceq 6316 . . . . . 6 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1110fveq2d 6760 . . . . 5 (𝑑 = 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝑐))
12 fveq2 6756 . . . . . 6 (𝑑 = 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝑐))
1312iuneq2d 4950 . . . . 5 (𝑑 = 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
1411, 13eqeq12d 2754 . . . 4 (𝑑 = 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)))
15 suceq 6316 . . . . . 6 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1615fveq2d 6760 . . . . 5 (𝑑 = suc 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc suc 𝑐))
17 fveq2 6756 . . . . . 6 (𝑑 = suc 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘suc 𝑐))
1817iuneq2d 4950 . . . . 5 (𝑑 = suc 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
1916, 18eqeq12d 2754 . . . 4 (𝑑 = suc 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
20 suceq 6316 . . . . . 6 (𝑑 = 𝐵 → suc 𝑑 = suc 𝐵)
2120fveq2d 6760 . . . . 5 (𝑑 = 𝐵 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝐵))
22 fveq2 6756 . . . . . 6 (𝑑 = 𝐵 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝐵))
2322iuneq2d 4950 . . . . 5 (𝑑 = 𝐵 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
2421, 23eqeq12d 2754 . . . 4 (𝑑 = 𝐵 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)))
25 uniiun 4984 . . . . 5 𝑏 = 𝑎𝑏 𝑎
26 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
2726itunisuc 10106 . . . . . 6 ((𝑈𝑏)‘suc ∅) = ((𝑈𝑏)‘∅)
2826ituni0 10105 . . . . . . . 8 (𝑏 ∈ V → ((𝑈𝑏)‘∅) = 𝑏)
2928elv 3428 . . . . . . 7 ((𝑈𝑏)‘∅) = 𝑏
3029unieqi 4849 . . . . . 6 ((𝑈𝑏)‘∅) = 𝑏
3127, 30eqtri 2766 . . . . 5 ((𝑈𝑏)‘suc ∅) = 𝑏
3226ituni0 10105 . . . . . 6 (𝑎𝑏 → ((𝑈𝑎)‘∅) = 𝑎)
3332iuneq2i 4942 . . . . 5 𝑎𝑏 ((𝑈𝑎)‘∅) = 𝑎𝑏 𝑎
3425, 31, 333eqtr4i 2776 . . . 4 ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)
3526itunisuc 10106 . . . . . 6 ((𝑈𝑏)‘suc suc 𝑐) = ((𝑈𝑏)‘suc 𝑐)
36 unieq 4847 . . . . . . 7 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
3726itunisuc 10106 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
3837a1i 11 . . . . . . . . 9 (𝑎𝑏 → ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐))
3938iuneq2i 4942 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
40 iuncom4 4929 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
4139, 40eqtr2i 2767 . . . . . . 7 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)
4236, 41eqtrdi 2795 . . . . . 6 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4335, 42eqtrid 2790 . . . . 5 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4443a1i 11 . . . 4 (𝑐 ∈ ω → (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
459, 14, 19, 24, 34, 44finds 7719 . . 3 (𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
46 iun0 4987 . . . . 5 𝑎𝑏 ∅ = ∅
4746eqcomi 2747 . . . 4 ∅ = 𝑎𝑏
48 peano2b 7704 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
49 vex 3426 . . . . . . . 8 𝑏 ∈ V
5026itunifn 10104 . . . . . . . 8 (𝑏 ∈ V → (𝑈𝑏) Fn ω)
51 fndm 6520 . . . . . . . 8 ((𝑈𝑏) Fn ω → dom (𝑈𝑏) = ω)
5249, 50, 51mp2b 10 . . . . . . 7 dom (𝑈𝑏) = ω
5352eleq2i 2830 . . . . . 6 (suc 𝐵 ∈ dom (𝑈𝑏) ↔ suc 𝐵 ∈ ω)
5448, 53bitr4i 277 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ dom (𝑈𝑏))
55 ndmfv 6786 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝑏) → ((𝑈𝑏)‘suc 𝐵) = ∅)
5654, 55sylnbi 329 . . . 4 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = ∅)
57 vex 3426 . . . . . . . 8 𝑎 ∈ V
5826itunifn 10104 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
59 fndm 6520 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
6057, 58, 59mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
6160eleq2i 2830 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
62 ndmfv 6786 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
6361, 62sylnbir 330 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
6463iuneq2d 4950 . . . 4 𝐵 ∈ ω → 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝑏 ∅)
6547, 56, 643eqtr4a 2805 . . 3 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
6645, 65pm2.61i 182 . 2 ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)
674, 66vtoclg 3495 1 (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253   cuni 4836   ciun 4921  cmpt 5153  dom cdm 5580  cres 5582  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  hsmexlem4  10116
  Copyright terms: Public domain W3C validator