Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgidm Structured version   Visualization version   GIF version

Theorem tgidm 21680
 Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgidm (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))

Proof of Theorem tgidm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6671 . . . . 5 (topGen‘𝐵) ∈ V
2 eltg3 21662 . . . . 5 ((topGen‘𝐵) ∈ V → (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦)))
31, 2ax-mp 5 . . . 4 (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦))
4 uniiun 4947 . . . . . . . . . 10 𝑦 = 𝑧𝑦 𝑧
5 simpr 488 . . . . . . . . . . . . 13 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ⊆ (topGen‘𝐵))
65sselda 3892 . . . . . . . . . . . 12 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 ∈ (topGen‘𝐵))
7 eltg4i 21660 . . . . . . . . . . . 12 (𝑧 ∈ (topGen‘𝐵) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
86, 7syl 17 . . . . . . . . . . 11 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
98iuneq2dv 4907 . . . . . . . . . 10 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 𝑧 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
104, 9syl5eq 2805 . . . . . . . . 9 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
11 iuncom4 4891 . . . . . . . . 9 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧)
1210, 11eqtrdi 2809 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
13 inss1 4133 . . . . . . . . . . . 12 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1413rgenw 3082 . . . . . . . . . . 11 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
15 iunss 4934 . . . . . . . . . . 11 ( 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵 ↔ ∀𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
1614, 15mpbir 234 . . . . . . . . . 10 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1716a1i 11 . . . . . . . . 9 (𝑦 ⊆ (topGen‘𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
18 eltg3i 21661 . . . . . . . . 9 ((𝐵𝑉 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
1917, 18sylan2 595 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
2012, 19eqeltrd 2852 . . . . . . 7 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ∈ (topGen‘𝐵))
21 eleq1 2839 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑦 ∈ (topGen‘𝐵)))
2220, 21syl5ibrcom 250 . . . . . 6 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → (𝑥 = 𝑦𝑥 ∈ (topGen‘𝐵)))
2322expimpd 457 . . . . 5 (𝐵𝑉 → ((𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
2423exlimdv 1934 . . . 4 (𝐵𝑉 → (∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
253, 24syl5bi 245 . . 3 (𝐵𝑉 → (𝑥 ∈ (topGen‘(topGen‘𝐵)) → 𝑥 ∈ (topGen‘𝐵)))
2625ssrdv 3898 . 2 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) ⊆ (topGen‘𝐵))
27 bastg 21666 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
28 tgss 21668 . . 3 (((topGen‘𝐵) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
291, 27, 28sylancr 590 . 2 (𝐵𝑉 → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
3026, 29eqssd 3909 1 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∀wral 3070  Vcvv 3409   ∩ cin 3857   ⊆ wss 3858  𝒫 cpw 4494  ∪ cuni 4798  ∪ ciun 4883  ‘cfv 6335  topGenctg 16769 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-topgen 16775 This theorem is referenced by:  tgss3  21686  txbasval  22306
 Copyright terms: Public domain W3C validator