Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimafveqt Structured version   Visualization version   GIF version

Theorem uniimafveqt 47255
Description: The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.)
Assertion
Ref Expression
uniimafveqt ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑆) = (𝐹𝑋)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem uniimafveqt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffun 6750 . . . . . 6 (𝐹:𝐴𝐵 → Fun 𝐹)
213ad2ant1 1133 . . . . 5 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → Fun 𝐹)
32adantr 480 . . . 4 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → Fun 𝐹)
4 funiunfv 7285 . . . 4 (Fun 𝐹 𝑦𝑆 (𝐹𝑦) = (𝐹𝑆))
53, 4syl 17 . . 3 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑆))
6 simp3 1138 . . . 4 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → 𝑋𝑆)
7 fveqeq2 6929 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑦) = (𝐹𝑋)))
87cbvralvw 3243 . . . . 5 (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) ↔ ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
98biimpi 216 . . . 4 (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
10 fveq2 6920 . . . . 5 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
1110iuneqconst 5026 . . . 4 ((𝑋𝑆 ∧ ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
126, 9, 11syl2an 595 . . 3 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
135, 12eqtr3d 2782 . 2 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → (𝐹𝑆) = (𝐹𝑋))
1413ex 412 1 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑆) = (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931   ciun 5015  cima 5703  Fun wfun 6567  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  uniimaprimaeqfv  47256
  Copyright terms: Public domain W3C validator