![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimafveqt | Structured version Visualization version GIF version |
Description: The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
uniimafveqt | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6740 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → Fun 𝐹) |
4 | funiunfv 7268 | . . . 4 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) |
6 | simp3 1137 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
7 | fveqeq2 6916 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑦) = (𝐹‘𝑋))) | |
8 | 7 | cbvralvw 3235 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
9 | 8 | biimpi 216 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
10 | fveq2 6907 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
11 | 10 | iuneqconst 5008 | . . . 4 ⊢ ((𝑋 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
12 | 6, 9, 11 | syl2an 596 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
13 | 5, 12 | eqtr3d 2777 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋)) |
14 | 13 | ex 412 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ∪ cuni 4912 ∪ ciun 4996 “ cima 5692 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: uniimaprimaeqfv 47307 |
Copyright terms: Public domain | W3C validator |