| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimafveqt | Structured version Visualization version GIF version | ||
| Description: The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.) |
| Ref | Expression |
|---|---|
| uniimafveqt | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6714 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → Fun 𝐹) |
| 4 | funiunfv 7245 | . . . 4 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) |
| 6 | simp3 1138 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 7 | fveqeq2 6890 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑦) = (𝐹‘𝑋))) | |
| 8 | 7 | cbvralvw 3224 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 9 | 8 | biimpi 216 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 10 | fveq2 6881 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
| 11 | 10 | iuneqconst 4984 | . . . 4 ⊢ ((𝑋 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 12 | 6, 9, 11 | syl2an 596 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 13 | 5, 12 | eqtr3d 2773 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋)) |
| 14 | 13 | ex 412 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ∪ cuni 4888 ∪ ciun 4972 “ cima 5662 Fun wfun 6530 ⟶wf 6532 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: uniimaprimaeqfv 47376 |
| Copyright terms: Public domain | W3C validator |