Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimafveqt Structured version   Visualization version   GIF version

Theorem uniimafveqt 47382
Description: The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.)
Assertion
Ref Expression
uniimafveqt ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑆) = (𝐹𝑋)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem uniimafveqt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffun 6691 . . . . . 6 (𝐹:𝐴𝐵 → Fun 𝐹)
213ad2ant1 1133 . . . . 5 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → Fun 𝐹)
32adantr 480 . . . 4 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → Fun 𝐹)
4 funiunfv 7222 . . . 4 (Fun 𝐹 𝑦𝑆 (𝐹𝑦) = (𝐹𝑆))
53, 4syl 17 . . 3 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑆))
6 simp3 1138 . . . 4 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → 𝑋𝑆)
7 fveqeq2 6867 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑦) = (𝐹𝑋)))
87cbvralvw 3215 . . . . 5 (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) ↔ ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
98biimpi 216 . . . 4 (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
10 fveq2 6858 . . . . 5 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
1110iuneqconst 4967 . . . 4 ((𝑋𝑆 ∧ ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
126, 9, 11syl2an 596 . . 3 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
135, 12eqtr3d 2766 . 2 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → (𝐹𝑆) = (𝐹𝑋))
1413ex 412 1 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑆) = (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914   cuni 4871   ciun 4955  cima 5641  Fun wfun 6505  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  uniimaprimaeqfv  47383
  Copyright terms: Public domain W3C validator