Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimafveqt Structured version   Visualization version   GIF version

Theorem uniimafveqt 44721
Description: The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.)
Assertion
Ref Expression
uniimafveqt ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑆) = (𝐹𝑋)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem uniimafveqt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffun 6587 . . . . . 6 (𝐹:𝐴𝐵 → Fun 𝐹)
213ad2ant1 1131 . . . . 5 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → Fun 𝐹)
32adantr 480 . . . 4 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → Fun 𝐹)
4 funiunfv 7103 . . . 4 (Fun 𝐹 𝑦𝑆 (𝐹𝑦) = (𝐹𝑆))
53, 4syl 17 . . 3 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑆))
6 simp3 1136 . . . 4 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → 𝑋𝑆)
7 fveqeq2 6765 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑦) = (𝐹𝑋)))
87cbvralvw 3372 . . . . 5 (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) ↔ ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
98biimpi 215 . . . 4 (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
10 fveq2 6756 . . . . 5 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
1110iuneqconst 4932 . . . 4 ((𝑋𝑆 ∧ ∀𝑦𝑆 (𝐹𝑦) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
126, 9, 11syl2an 595 . . 3 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → 𝑦𝑆 (𝐹𝑦) = (𝐹𝑋))
135, 12eqtr3d 2780 . 2 (((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) ∧ ∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋)) → (𝐹𝑆) = (𝐹𝑋))
1413ex 412 1 ((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑆) = (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883   cuni 4836   ciun 4921  cima 5583  Fun wfun 6412  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  uniimaprimaeqfv  44722
  Copyright terms: Public domain W3C validator