Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimafveqt | Structured version Visualization version GIF version |
Description: The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
uniimafveqt | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6587 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → Fun 𝐹) |
4 | funiunfv 7103 | . . . 4 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) |
6 | simp3 1136 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
7 | fveqeq2 6765 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑦) = (𝐹‘𝑋))) | |
8 | 7 | cbvralvw 3372 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
9 | 8 | biimpi 215 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
10 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
11 | 10 | iuneqconst 4932 | . . . 4 ⊢ ((𝑋 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
12 | 6, 9, 11 | syl2an 595 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
13 | 5, 12 | eqtr3d 2780 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋)) |
14 | 13 | ex 412 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∪ cuni 4836 ∪ ciun 4921 “ cima 5583 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: uniimaprimaeqfv 44722 |
Copyright terms: Public domain | W3C validator |