![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimafveqt | Structured version Visualization version GIF version |
Description: The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
uniimafveqt | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6721 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → Fun 𝐹) |
4 | funiunfv 7250 | . . . 4 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑆)) |
6 | simp3 1137 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
7 | fveqeq2 6901 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑦) = (𝐹‘𝑋))) | |
8 | 7 | cbvralvw 3233 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
9 | 8 | biimpi 215 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
10 | fveq2 6892 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
11 | 10 | iuneqconst 5009 | . . . 4 ⊢ ((𝑋 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
12 | 6, 9, 11 | syl2an 595 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑆 (𝐹‘𝑦) = (𝐹‘𝑋)) |
13 | 5, 12 | eqtr3d 2773 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋)) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋)) |
14 | 13 | ex 412 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3949 ∪ cuni 4909 ∪ ciun 4998 “ cima 5680 Fun wfun 6538 ⟶wf 6540 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 |
This theorem is referenced by: uniimaprimaeqfv 46350 |
Copyright terms: Public domain | W3C validator |