MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuniin Structured version   Visualization version   GIF version

Theorem iuniin 4936
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iuniin 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem iuniin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 r19.12 3257 . . . 4 (∃𝑥𝐴𝑦𝐵 𝑧𝐶 → ∀𝑦𝐵𝑥𝐴 𝑧𝐶)
2 eliin 4929 . . . . . 6 (𝑧 ∈ V → (𝑧 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 𝑧𝐶))
32elv 3438 . . . . 5 (𝑧 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 𝑧𝐶)
43rexbii 3181 . . . 4 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧𝐶)
5 eliun 4928 . . . . 5 (𝑧 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑧𝐶)
65ralbii 3092 . . . 4 (∀𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 𝑧𝐶)
71, 4, 63imtr4i 292 . . 3 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 → ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶)
8 eliun 4928 . . 3 (𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴 𝑧 𝑦𝐵 𝐶)
9 eliin 4929 . . . 4 (𝑧 ∈ V → (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶))
109elv 3438 . . 3 (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶)
117, 8, 103imtr4i 292 . 2 (𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶)
1211ssriv 3925 1 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   ciun 4924   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-iun 4926  df-iin 4927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator