![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuniin | Structured version Visualization version GIF version |
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iuniin | ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 3312 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
2 | eliin 5003 | . . . . . 6 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) | |
3 | 2 | elv 3481 | . . . . 5 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
4 | 3 | rexbii 3095 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
5 | eliun 5002 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
6 | 5 | ralbii 3094 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
7 | 1, 4, 6 | 3imtr4i 292 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 → ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
8 | eliun 5002 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶) | |
9 | eliin 5003 | . . . 4 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
10 | 9 | elv 3481 | . . 3 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
11 | 7, 8, 10 | 3imtr4i 292 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 → 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
12 | 11 | ssriv 3987 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 ∪ ciun 4998 ∩ ciin 4999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-iun 5000 df-iin 5001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |