| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuniin | Structured version Visualization version GIF version | ||
| Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iuniin | ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.12 3314 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 2 | eliin 4996 | . . . . . 6 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) | |
| 3 | 2 | elv 3485 | . . . . 5 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 4 | 3 | rexbii 3094 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 5 | eliun 4995 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 6 | 5 | ralbii 3093 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 7 | 1, 4, 6 | 3imtr4i 292 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 → ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
| 8 | eliun 4995 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶) | |
| 9 | eliin 4996 | . . . 4 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 10 | 9 | elv 3485 | . . 3 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
| 11 | 7, 8, 10 | 3imtr4i 292 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 → 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
| 12 | 11 | ssriv 3987 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 ∪ ciun 4991 ∩ ciin 4992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-v 3482 df-ss 3968 df-iun 4993 df-iin 4994 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |