![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv | Structured version Visualization version GIF version |
Description: Lemma for imasetpreimafvbij 47331: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbijlemfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6669 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | anim1i 615 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
3 | 2 | 3adant3 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
4 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
5 | fundcmpsurinj.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
6 | 4, 5 | fundcmpsurinjlem3 47325 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ 𝑃) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
8 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → Fun 𝐹) |
9 | funiunfv 7268 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) |
11 | simp3 1137 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
12 | simpl1 1190 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝐹 Fn 𝐴) | |
13 | simpl2 1191 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑌 ∈ 𝑃) | |
14 | simpr 484 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
15 | simpl3 1192 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
16 | 4 | elsetpreimafveqfv 47317 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑌 ∈ 𝑃 ∧ 𝑦 ∈ 𝑌 ∧ 𝑋 ∈ 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
17 | 12, 13, 14, 15, 16 | syl13anc 1371 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
18 | 17 | ralrimiva 3144 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
19 | fveq2 6907 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
20 | 19 | iuneqconst 5008 | . . 3 ⊢ ((𝑋 ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
21 | 11, 18, 20 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
22 | 7, 10, 21 | 3eqtr2d 2781 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 {csn 4631 ∪ cuni 4912 ∪ ciun 4996 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 Fun wfun 6557 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: imasetpreimafvbijlemfv1 47328 |
Copyright terms: Public domain | W3C validator |