| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv | Structured version Visualization version GIF version | ||
| Description: Lemma for imasetpreimafvbij 47407: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
| Ref | Expression |
|---|---|
| imasetpreimafvbijlemfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6618 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | anim1i 615 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
| 4 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 5 | fundcmpsurinj.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
| 6 | 4, 5 | fundcmpsurinjlem3 47401 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ 𝑃) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
| 8 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → Fun 𝐹) |
| 9 | funiunfv 7222 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) |
| 11 | simp3 1138 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
| 12 | simpl1 1192 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝐹 Fn 𝐴) | |
| 13 | simpl2 1193 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑌 ∈ 𝑃) | |
| 14 | simpr 484 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
| 15 | simpl3 1194 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
| 16 | 4 | elsetpreimafveqfv 47393 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑌 ∈ 𝑃 ∧ 𝑦 ∈ 𝑌 ∧ 𝑋 ∈ 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 17 | 12, 13, 14, 15, 16 | syl13anc 1374 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 18 | 17 | ralrimiva 3125 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 19 | fveq2 6858 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
| 20 | 19 | iuneqconst 4967 | . . 3 ⊢ ((𝑋 ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 21 | 11, 18, 20 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 22 | 7, 10, 21 | 3eqtr2d 2770 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 {csn 4589 ∪ cuni 4871 ∪ ciun 4955 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: imasetpreimafvbijlemfv1 47404 |
| Copyright terms: Public domain | W3C validator |