Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv | Structured version Visualization version GIF version |
Description: Lemma for imasetpreimafvbij 44858: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbijlemfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6533 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | anim1i 615 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
3 | 2 | 3adant3 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
4 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
5 | fundcmpsurinj.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
6 | 4, 5 | fundcmpsurinjlem3 44852 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ 𝑃) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
8 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → Fun 𝐹) |
9 | funiunfv 7121 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) |
11 | simp3 1137 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
12 | simpl1 1190 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝐹 Fn 𝐴) | |
13 | simpl2 1191 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑌 ∈ 𝑃) | |
14 | simpr 485 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
15 | simpl3 1192 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
16 | 4 | elsetpreimafveqfv 44844 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑌 ∈ 𝑃 ∧ 𝑦 ∈ 𝑌 ∧ 𝑋 ∈ 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
17 | 12, 13, 14, 15, 16 | syl13anc 1371 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
18 | 17 | ralrimiva 3103 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
19 | fveq2 6774 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
20 | 19 | iuneqconst 4935 | . . 3 ⊢ ((𝑋 ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
21 | 11, 18, 20 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
22 | 7, 10, 21 | 3eqtr2d 2784 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 {csn 4561 ∪ cuni 4839 ∪ ciun 4924 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: imasetpreimafvbijlemfv1 44855 |
Copyright terms: Public domain | W3C validator |