Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfv Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfv 47407
Description: Lemma for imasetpreimafvbij 47411: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfv ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (𝐻𝑌) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝑋,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑥,𝑋   𝑌,𝑝,𝑥,𝑧
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑋(𝑧)

Proof of Theorem imasetpreimafvbijlemfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnfun 6621 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
21anim1i 615 . . . 4 ((𝐹 Fn 𝐴𝑌𝑃) → (Fun 𝐹𝑌𝑃))
323adant3 1132 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (Fun 𝐹𝑌𝑃))
4 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
5 fundcmpsurinj.h . . . 4 𝐻 = (𝑝𝑃 (𝐹𝑝))
64, 5fundcmpsurinjlem3 47405 . . 3 ((Fun 𝐹𝑌𝑃) → (𝐻𝑌) = (𝐹𝑌))
73, 6syl 17 . 2 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (𝐻𝑌) = (𝐹𝑌))
813ad2ant1 1133 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → Fun 𝐹)
9 funiunfv 7225 . . 3 (Fun 𝐹 𝑦𝑌 (𝐹𝑦) = (𝐹𝑌))
108, 9syl 17 . 2 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → 𝑦𝑌 (𝐹𝑦) = (𝐹𝑌))
11 simp3 1138 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → 𝑋𝑌)
12 simpl1 1192 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝐹 Fn 𝐴)
13 simpl2 1193 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝑌𝑃)
14 simpr 484 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝑦𝑌)
15 simpl3 1194 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝑋𝑌)
164elsetpreimafveqfv 47397 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑌𝑃𝑦𝑌𝑋𝑌)) → (𝐹𝑦) = (𝐹𝑋))
1712, 13, 14, 15, 16syl13anc 1374 . . . 4 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → (𝐹𝑦) = (𝐹𝑋))
1817ralrimiva 3126 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → ∀𝑦𝑌 (𝐹𝑦) = (𝐹𝑋))
19 fveq2 6861 . . . 4 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
2019iuneqconst 4970 . . 3 ((𝑋𝑌 ∧ ∀𝑦𝑌 (𝐹𝑦) = (𝐹𝑋)) → 𝑦𝑌 (𝐹𝑦) = (𝐹𝑋))
2111, 18, 20syl2anc 584 . 2 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → 𝑦𝑌 (𝐹𝑦) = (𝐹𝑋))
227, 10, 213eqtr2d 2771 1 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (𝐻𝑌) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {csn 4592   cuni 4874   ciun 4958  cmpt 5191  ccnv 5640  cima 5644  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  imasetpreimafvbijlemfv1  47408
  Copyright terms: Public domain W3C validator