![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv | Structured version Visualization version GIF version |
Description: Lemma for imasetpreimafvbij 46374: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbijlemfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6650 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | anim1i 613 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
3 | 2 | 3adant3 1130 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
4 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
5 | fundcmpsurinj.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
6 | 4, 5 | fundcmpsurinjlem3 46368 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ 𝑃) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
8 | 1 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → Fun 𝐹) |
9 | funiunfv 7251 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) |
11 | simp3 1136 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
12 | simpl1 1189 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝐹 Fn 𝐴) | |
13 | simpl2 1190 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑌 ∈ 𝑃) | |
14 | simpr 483 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
15 | simpl3 1191 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
16 | 4 | elsetpreimafveqfv 46360 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑌 ∈ 𝑃 ∧ 𝑦 ∈ 𝑌 ∧ 𝑋 ∈ 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
17 | 12, 13, 14, 15, 16 | syl13anc 1370 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
18 | 17 | ralrimiva 3144 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
19 | fveq2 6892 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
20 | 19 | iuneqconst 5009 | . . 3 ⊢ ((𝑋 ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
21 | 11, 18, 20 | syl2anc 582 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
22 | 7, 10, 21 | 3eqtr2d 2776 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 {cab 2707 ∀wral 3059 ∃wrex 3068 {csn 4629 ∪ cuni 4909 ∪ ciun 4998 ↦ cmpt 5232 ◡ccnv 5676 “ cima 5680 Fun wfun 6538 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: imasetpreimafvbijlemfv1 46371 |
Copyright terms: Public domain | W3C validator |