| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv | Structured version Visualization version GIF version | ||
| Description: Lemma for imasetpreimafvbij 47516: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
| Ref | Expression |
|---|---|
| imasetpreimafvbijlemfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6581 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | anim1i 615 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (Fun 𝐹 ∧ 𝑌 ∈ 𝑃)) |
| 4 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 5 | fundcmpsurinj.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
| 6 | 4, 5 | fundcmpsurinjlem3 47510 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ 𝑃) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = ∪ (𝐹 “ 𝑌)) |
| 8 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → Fun 𝐹) |
| 9 | funiunfv 7182 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = ∪ (𝐹 “ 𝑌)) |
| 11 | simp3 1138 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
| 12 | simpl1 1192 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝐹 Fn 𝐴) | |
| 13 | simpl2 1193 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑌 ∈ 𝑃) | |
| 14 | simpr 484 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) | |
| 15 | simpl3 1194 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → 𝑋 ∈ 𝑌) | |
| 16 | 4 | elsetpreimafveqfv 47502 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑌 ∈ 𝑃 ∧ 𝑦 ∈ 𝑌 ∧ 𝑋 ∈ 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 17 | 12, 13, 14, 15, 16 | syl13anc 1374 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) ∧ 𝑦 ∈ 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 18 | 17 | ralrimiva 3124 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 19 | fveq2 6822 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
| 20 | 19 | iuneqconst 4951 | . . 3 ⊢ ((𝑋 ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 21 | 11, 18, 20 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → ∪ 𝑦 ∈ 𝑌 (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 22 | 7, 10, 21 | 3eqtr2d 2772 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 {csn 4573 ∪ cuni 4856 ∪ ciun 4939 ↦ cmpt 5170 ◡ccnv 5613 “ cima 5617 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: imasetpreimafvbijlemfv1 47513 |
| Copyright terms: Public domain | W3C validator |