Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfv Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfv 46528
Description: Lemma for imasetpreimafvbij 46532: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfv ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (𝐻𝑌) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝑋,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑥,𝑋   𝑌,𝑝,𝑥,𝑧
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑋(𝑧)

Proof of Theorem imasetpreimafvbijlemfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnfun 6649 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
21anim1i 614 . . . 4 ((𝐹 Fn 𝐴𝑌𝑃) → (Fun 𝐹𝑌𝑃))
323adant3 1131 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (Fun 𝐹𝑌𝑃))
4 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
5 fundcmpsurinj.h . . . 4 𝐻 = (𝑝𝑃 (𝐹𝑝))
64, 5fundcmpsurinjlem3 46526 . . 3 ((Fun 𝐹𝑌𝑃) → (𝐻𝑌) = (𝐹𝑌))
73, 6syl 17 . 2 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (𝐻𝑌) = (𝐹𝑌))
813ad2ant1 1132 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → Fun 𝐹)
9 funiunfv 7250 . . 3 (Fun 𝐹 𝑦𝑌 (𝐹𝑦) = (𝐹𝑌))
108, 9syl 17 . 2 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → 𝑦𝑌 (𝐹𝑦) = (𝐹𝑌))
11 simp3 1137 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → 𝑋𝑌)
12 simpl1 1190 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝐹 Fn 𝐴)
13 simpl2 1191 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝑌𝑃)
14 simpr 484 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝑦𝑌)
15 simpl3 1192 . . . . 5 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → 𝑋𝑌)
164elsetpreimafveqfv 46518 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑌𝑃𝑦𝑌𝑋𝑌)) → (𝐹𝑦) = (𝐹𝑋))
1712, 13, 14, 15, 16syl13anc 1371 . . . 4 (((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) ∧ 𝑦𝑌) → (𝐹𝑦) = (𝐹𝑋))
1817ralrimiva 3145 . . 3 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → ∀𝑦𝑌 (𝐹𝑦) = (𝐹𝑋))
19 fveq2 6891 . . . 4 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
2019iuneqconst 5008 . . 3 ((𝑋𝑌 ∧ ∀𝑦𝑌 (𝐹𝑦) = (𝐹𝑋)) → 𝑦𝑌 (𝐹𝑦) = (𝐹𝑋))
2111, 18, 20syl2anc 583 . 2 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → 𝑦𝑌 (𝐹𝑦) = (𝐹𝑋))
227, 10, 213eqtr2d 2777 1 ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (𝐻𝑌) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  {csn 4628   cuni 4908   ciun 4997  cmpt 5231  ccnv 5675  cima 5679  Fun wfun 6537   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  imasetpreimafvbijlemfv1  46529
  Copyright terms: Public domain W3C validator