![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbmpt2 | Structured version Visualization version GIF version |
Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.) |
Ref | Expression |
---|---|
csbmpt2 | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbmpt12 5558 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) | |
2 | csbconstg 3913 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑌 = 𝑌) | |
3 | 2 | mpteq1d 5244 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
4 | 1, 3 | eqtrd 2773 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⦋csb 3894 ↦ cmpt 5232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-mpt 5233 |
This theorem is referenced by: matgsum 21939 csbrdgg 36210 |
Copyright terms: Public domain | W3C validator |