MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbmpt2 Structured version   Visualization version   GIF version

Theorem csbmpt2 5568
Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.)
Assertion
Ref Expression
csbmpt2 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝑦,𝑌,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem csbmpt2
StepHypRef Expression
1 csbmpt12 5567 . 2 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍))
2 csbconstg 3927 . . 3 (𝐴𝑉𝐴 / 𝑥𝑌 = 𝑌)
32mpteq1d 5243 . 2 (𝐴𝑉 → (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
41, 3eqtrd 2775 1 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  csb 3908  cmpt 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-mpt 5232
This theorem is referenced by:  matgsum  22459  csbrdgg  37312
  Copyright terms: Public domain W3C validator