MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbmpt2 Structured version   Visualization version   GIF version

Theorem csbmpt2 5577
Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.)
Assertion
Ref Expression
csbmpt2 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝑦,𝑌,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem csbmpt2
StepHypRef Expression
1 csbmpt12 5576 . 2 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍))
2 csbconstg 3940 . . 3 (𝐴𝑉𝐴 / 𝑥𝑌 = 𝑌)
32mpteq1d 5261 . 2 (𝐴𝑉 → (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
41, 3eqtrd 2780 1 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  csb 3921  cmpt 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-mpt 5250
This theorem is referenced by:  matgsum  22464  csbrdgg  37295
  Copyright terms: Public domain W3C validator