MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbmpt2 Structured version   Visualization version   GIF version

Theorem csbmpt2 5501
Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.)
Assertion
Ref Expression
csbmpt2 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝑦,𝑌,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem csbmpt2
StepHypRef Expression
1 csbmpt12 5500 . 2 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍))
2 csbconstg 3865 . . 3 (𝐴𝑉𝐴 / 𝑥𝑌 = 𝑌)
32mpteq1d 5183 . 2 (𝐴𝑉 → (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
41, 3eqtrd 2768 1 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝑌𝐴 / 𝑥𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  csb 3846  cmpt 5174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-opab 5156  df-mpt 5175
This theorem is referenced by:  matgsum  22353  csbrdgg  37394
  Copyright terms: Public domain W3C validator