| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbmpt2 | Structured version Visualization version GIF version | ||
| Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.) |
| Ref | Expression |
|---|---|
| csbmpt2 | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbmpt12 5544 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) | |
| 2 | csbconstg 3900 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑌 = 𝑌) | |
| 3 | 2 | mpteq1d 5219 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
| 4 | 1, 3 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⦋csb 3881 ↦ cmpt 5207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-opab 5188 df-mpt 5208 |
| This theorem is referenced by: matgsum 22410 csbrdgg 37271 |
| Copyright terms: Public domain | W3C validator |