![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbmpt2 | Structured version Visualization version GIF version |
Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.) |
Ref | Expression |
---|---|
csbmpt2 | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbmpt12 5567 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) | |
2 | csbconstg 3927 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑌 = 𝑌) | |
3 | 2 | mpteq1d 5243 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
4 | 1, 3 | eqtrd 2775 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⦋csb 3908 ↦ cmpt 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-opab 5211 df-mpt 5232 |
This theorem is referenced by: matgsum 22459 csbrdgg 37312 |
Copyright terms: Public domain | W3C validator |