MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdompw Structured version   Visualization version   GIF version

Theorem pwsdompw 9615
Description: Lemma for domtriom 9854. This is the equinumerosity version of the algebraic identity Σ𝑘𝑛(2↑𝑘) = (2↑𝑛) − 1. (Contributed by Mario Carneiro, 7-Feb-2013.)
Assertion
Ref Expression
pwsdompw ((𝑛 ∈ ω ∧ ∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘) → 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛))
Distinct variable group:   𝐵,𝑘,𝑛

Proof of Theorem pwsdompw
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 suceq 6224 . . . . 5 (𝑛 = ∅ → suc 𝑛 = suc ∅)
21raleqdv 3364 . . . 4 (𝑛 = ∅ → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 ↔ ∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘))
3 iuneq1 4897 . . . . 5 (𝑛 = ∅ → 𝑘𝑛 (𝐵𝑘) = 𝑘 ∈ ∅ (𝐵𝑘))
4 fveq2 6645 . . . . 5 (𝑛 = ∅ → (𝐵𝑛) = (𝐵‘∅))
53, 4breq12d 5043 . . . 4 (𝑛 = ∅ → ( 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛) ↔ 𝑘 ∈ ∅ (𝐵𝑘) ≺ (𝐵‘∅)))
62, 5imbi12d 348 . . 3 (𝑛 = ∅ → ((∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)) ↔ (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ ∅ (𝐵𝑘) ≺ (𝐵‘∅))))
7 suceq 6224 . . . . 5 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
87raleqdv 3364 . . . 4 (𝑛 = 𝑚 → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 ↔ ∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘))
9 iuneq1 4897 . . . . 5 (𝑛 = 𝑚 𝑘𝑛 (𝐵𝑘) = 𝑘𝑚 (𝐵𝑘))
10 fveq2 6645 . . . . 5 (𝑛 = 𝑚 → (𝐵𝑛) = (𝐵𝑚))
119, 10breq12d 5043 . . . 4 (𝑛 = 𝑚 → ( 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛) ↔ 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
128, 11imbi12d 348 . . 3 (𝑛 = 𝑚 → ((∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)) ↔ (∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚))))
13 suceq 6224 . . . . 5 (𝑛 = suc 𝑚 → suc 𝑛 = suc suc 𝑚)
1413raleqdv 3364 . . . 4 (𝑛 = suc 𝑚 → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 ↔ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘))
15 iuneq1 4897 . . . . 5 (𝑛 = suc 𝑚 𝑘𝑛 (𝐵𝑘) = 𝑘 ∈ suc 𝑚(𝐵𝑘))
16 fveq2 6645 . . . . 5 (𝑛 = suc 𝑚 → (𝐵𝑛) = (𝐵‘suc 𝑚))
1715, 16breq12d 5043 . . . 4 (𝑛 = suc 𝑚 → ( 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛) ↔ 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
1814, 17imbi12d 348 . . 3 (𝑛 = suc 𝑚 → ((∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)) ↔ (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))))
19 0iun 4949 . . . 4 𝑘 ∈ ∅ (𝐵𝑘) = ∅
20 0ex 5175 . . . . . . 7 ∅ ∈ V
2120sucid 6238 . . . . . 6 ∅ ∈ suc ∅
22 fveq2 6645 . . . . . . . 8 (𝑘 = ∅ → (𝐵𝑘) = (𝐵‘∅))
23 pweq 4513 . . . . . . . 8 (𝑘 = ∅ → 𝒫 𝑘 = 𝒫 ∅)
2422, 23breq12d 5043 . . . . . . 7 (𝑘 = ∅ → ((𝐵𝑘) ≈ 𝒫 𝑘 ↔ (𝐵‘∅) ≈ 𝒫 ∅))
2524rspcv 3566 . . . . . 6 (∅ ∈ suc ∅ → (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘∅) ≈ 𝒫 ∅))
2621, 25ax-mp 5 . . . . 5 (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘∅) ≈ 𝒫 ∅)
2720canth2 8654 . . . . . 6 ∅ ≺ 𝒫 ∅
28 ensym 8541 . . . . . 6 ((𝐵‘∅) ≈ 𝒫 ∅ → 𝒫 ∅ ≈ (𝐵‘∅))
29 sdomentr 8635 . . . . . 6 ((∅ ≺ 𝒫 ∅ ∧ 𝒫 ∅ ≈ (𝐵‘∅)) → ∅ ≺ (𝐵‘∅))
3027, 28, 29sylancr 590 . . . . 5 ((𝐵‘∅) ≈ 𝒫 ∅ → ∅ ≺ (𝐵‘∅))
3126, 30syl 17 . . . 4 (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 → ∅ ≺ (𝐵‘∅))
3219, 31eqbrtrid 5065 . . 3 (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ ∅ (𝐵𝑘) ≺ (𝐵‘∅))
33 sssucid 6236 . . . . . . . . 9 suc 𝑚 ⊆ suc suc 𝑚
34 ssralv 3981 . . . . . . . . 9 (suc 𝑚 ⊆ suc suc 𝑚 → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘))
3533, 34ax-mp 5 . . . . . . . 8 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘)
36 pm2.27 42 . . . . . . . 8 (∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
3735, 36syl 17 . . . . . . 7 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
3837adantl 485 . . . . . 6 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
39 vex 3444 . . . . . . . . . . . . 13 𝑚 ∈ V
4039sucid 6238 . . . . . . . . . . . 12 𝑚 ∈ suc 𝑚
41 elelsuc 6231 . . . . . . . . . . . 12 (𝑚 ∈ suc 𝑚𝑚 ∈ suc suc 𝑚)
42 fveq2 6645 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
43 pweq 4513 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → 𝒫 𝑘 = 𝒫 𝑚)
4442, 43breq12d 5043 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝐵𝑘) ≈ 𝒫 𝑘 ↔ (𝐵𝑚) ≈ 𝒫 𝑚))
4544rspcv 3566 . . . . . . . . . . . 12 (𝑚 ∈ suc suc 𝑚 → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵𝑚) ≈ 𝒫 𝑚))
4640, 41, 45mp2b 10 . . . . . . . . . . 11 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵𝑚) ≈ 𝒫 𝑚)
47 djuen 9580 . . . . . . . . . . 11 (((𝐵𝑚) ≈ 𝒫 𝑚 ∧ (𝐵𝑚) ≈ 𝒫 𝑚) → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝒫 𝑚 ⊔ 𝒫 𝑚))
4846, 46, 47syl2anc 587 . . . . . . . . . 10 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝒫 𝑚 ⊔ 𝒫 𝑚))
49 pwdju1 9601 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝒫 𝑚 ⊔ 𝒫 𝑚) ≈ 𝒫 (𝑚 ⊔ 1o))
50 nnord 7568 . . . . . . . . . . . . . 14 (𝑚 ∈ ω → Ord 𝑚)
51 ordirr 6177 . . . . . . . . . . . . . 14 (Ord 𝑚 → ¬ 𝑚𝑚)
5250, 51syl 17 . . . . . . . . . . . . 13 (𝑚 ∈ ω → ¬ 𝑚𝑚)
53 dju1en 9582 . . . . . . . . . . . . 13 ((𝑚 ∈ ω ∧ ¬ 𝑚𝑚) → (𝑚 ⊔ 1o) ≈ suc 𝑚)
5452, 53mpdan 686 . . . . . . . . . . . 12 (𝑚 ∈ ω → (𝑚 ⊔ 1o) ≈ suc 𝑚)
55 pwen 8674 . . . . . . . . . . . 12 ((𝑚 ⊔ 1o) ≈ suc 𝑚 → 𝒫 (𝑚 ⊔ 1o) ≈ 𝒫 suc 𝑚)
5654, 55syl 17 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝒫 (𝑚 ⊔ 1o) ≈ 𝒫 suc 𝑚)
57 entr 8544 . . . . . . . . . . 11 (((𝒫 𝑚 ⊔ 𝒫 𝑚) ≈ 𝒫 (𝑚 ⊔ 1o) ∧ 𝒫 (𝑚 ⊔ 1o) ≈ 𝒫 suc 𝑚) → (𝒫 𝑚 ⊔ 𝒫 𝑚) ≈ 𝒫 suc 𝑚)
5849, 56, 57syl2anc 587 . . . . . . . . . 10 (𝑚 ∈ ω → (𝒫 𝑚 ⊔ 𝒫 𝑚) ≈ 𝒫 suc 𝑚)
59 entr 8544 . . . . . . . . . 10 ((((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝒫 𝑚 ⊔ 𝒫 𝑚) ∧ (𝒫 𝑚 ⊔ 𝒫 𝑚) ≈ 𝒫 suc 𝑚) → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ 𝒫 suc 𝑚)
6048, 58, 59syl2an 598 . . . . . . . . 9 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ 𝒫 suc 𝑚)
6139sucex 7506 . . . . . . . . . . . . 13 suc 𝑚 ∈ V
6261sucid 6238 . . . . . . . . . . . 12 suc 𝑚 ∈ suc suc 𝑚
63 fveq2 6645 . . . . . . . . . . . . . 14 (𝑘 = suc 𝑚 → (𝐵𝑘) = (𝐵‘suc 𝑚))
64 pweq 4513 . . . . . . . . . . . . . 14 (𝑘 = suc 𝑚 → 𝒫 𝑘 = 𝒫 suc 𝑚)
6563, 64breq12d 5043 . . . . . . . . . . . . 13 (𝑘 = suc 𝑚 → ((𝐵𝑘) ≈ 𝒫 𝑘 ↔ (𝐵‘suc 𝑚) ≈ 𝒫 suc 𝑚))
6665rspcv 3566 . . . . . . . . . . . 12 (suc 𝑚 ∈ suc suc 𝑚 → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘suc 𝑚) ≈ 𝒫 suc 𝑚))
6762, 66ax-mp 5 . . . . . . . . . . 11 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘suc 𝑚) ≈ 𝒫 suc 𝑚)
6867ensymd 8543 . . . . . . . . . 10 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → 𝒫 suc 𝑚 ≈ (𝐵‘suc 𝑚))
6968adantr 484 . . . . . . . . 9 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → 𝒫 suc 𝑚 ≈ (𝐵‘suc 𝑚))
70 entr 8544 . . . . . . . . 9 ((((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ 𝒫 suc 𝑚 ∧ 𝒫 suc 𝑚 ≈ (𝐵‘suc 𝑚)) → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝐵‘suc 𝑚))
7160, 69, 70syl2anc 587 . . . . . . . 8 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝐵‘suc 𝑚))
7271ancoms 462 . . . . . . 7 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝐵‘suc 𝑚))
73 nnfi 8696 . . . . . . . . . . . 12 (𝑚 ∈ ω → 𝑚 ∈ Fin)
74 pwfi 8803 . . . . . . . . . . . . 13 (𝑚 ∈ Fin ↔ 𝒫 𝑚 ∈ Fin)
75 isfinite 9099 . . . . . . . . . . . . 13 (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω)
7674, 75bitri 278 . . . . . . . . . . . 12 (𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω)
7773, 76sylib 221 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝒫 𝑚 ≺ ω)
78 ensdomtr 8637 . . . . . . . . . . 11 (((𝐵𝑚) ≈ 𝒫 𝑚 ∧ 𝒫 𝑚 ≺ ω) → (𝐵𝑚) ≺ ω)
7946, 77, 78syl2an 598 . . . . . . . . . 10 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → (𝐵𝑚) ≺ ω)
80 isfinite 9099 . . . . . . . . . 10 ((𝐵𝑚) ∈ Fin ↔ (𝐵𝑚) ≺ ω)
8179, 80sylibr 237 . . . . . . . . 9 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → (𝐵𝑚) ∈ Fin)
8281ancoms 462 . . . . . . . 8 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → (𝐵𝑚) ∈ Fin)
8339, 42iunsuc 6241 . . . . . . . . . . 11 𝑘 ∈ suc 𝑚(𝐵𝑘) = ( 𝑘𝑚 (𝐵𝑘) ∪ (𝐵𝑚))
84 fvex 6658 . . . . . . . . . . . . 13 (𝐵𝑘) ∈ V
8539, 84iunex 7651 . . . . . . . . . . . 12 𝑘𝑚 (𝐵𝑘) ∈ V
86 fvex 6658 . . . . . . . . . . . 12 (𝐵𝑚) ∈ V
87 undjudom 9578 . . . . . . . . . . . 12 (( 𝑘𝑚 (𝐵𝑘) ∈ V ∧ (𝐵𝑚) ∈ V) → ( 𝑘𝑚 (𝐵𝑘) ∪ (𝐵𝑚)) ≼ ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)))
8885, 86, 87mp2an 691 . . . . . . . . . . 11 ( 𝑘𝑚 (𝐵𝑘) ∪ (𝐵𝑚)) ≼ ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚))
8983, 88eqbrtri 5051 . . . . . . . . . 10 𝑘 ∈ suc 𝑚(𝐵𝑘) ≼ ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚))
90 sdomtr 8639 . . . . . . . . . . . . . . . 16 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ≺ ω) → 𝑘𝑚 (𝐵𝑘) ≺ ω)
9180, 90sylan2b 596 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ≺ ω)
92 isfinite 9099 . . . . . . . . . . . . . . 15 ( 𝑘𝑚 (𝐵𝑘) ∈ Fin ↔ 𝑘𝑚 (𝐵𝑘) ≺ ω)
9391, 92sylibr 237 . . . . . . . . . . . . . 14 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ∈ Fin)
94 finnum 9361 . . . . . . . . . . . . . 14 ( 𝑘𝑚 (𝐵𝑘) ∈ Fin → 𝑘𝑚 (𝐵𝑘) ∈ dom card)
9593, 94syl 17 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ∈ dom card)
96 finnum 9361 . . . . . . . . . . . . . 14 ((𝐵𝑚) ∈ Fin → (𝐵𝑚) ∈ dom card)
9796adantl 485 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (𝐵𝑚) ∈ dom card)
98 cardadju 9605 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ∈ dom card ∧ (𝐵𝑚) ∈ dom card) → ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≈ ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))))
9995, 97, 98syl2anc 587 . . . . . . . . . . . 12 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≈ ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))))
100 ficardom 9374 . . . . . . . . . . . . . . . 16 ( 𝑘𝑚 (𝐵𝑘) ∈ Fin → (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω)
10193, 100syl 17 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω)
102 ficardom 9374 . . . . . . . . . . . . . . . 16 ((𝐵𝑚) ∈ Fin → (card‘(𝐵𝑚)) ∈ ω)
103102adantl 485 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘(𝐵𝑚)) ∈ ω)
104 cardid2 9366 . . . . . . . . . . . . . . . . . 18 ( 𝑘𝑚 (𝐵𝑘) ∈ dom card → (card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘))
10593, 94, 1043syl 18 . . . . . . . . . . . . . . . . 17 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘))
106 simpl 486 . . . . . . . . . . . . . . . . 17 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚))
107 cardid2 9366 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑚) ∈ dom card → (card‘(𝐵𝑚)) ≈ (𝐵𝑚))
108 ensym 8541 . . . . . . . . . . . . . . . . . . 19 ((card‘(𝐵𝑚)) ≈ (𝐵𝑚) → (𝐵𝑚) ≈ (card‘(𝐵𝑚)))
10996, 107, 1083syl 18 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑚) ∈ Fin → (𝐵𝑚) ≈ (card‘(𝐵𝑚)))
110109adantl 485 . . . . . . . . . . . . . . . . 17 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (𝐵𝑚) ≈ (card‘(𝐵𝑚)))
111 ensdomtr 8637 . . . . . . . . . . . . . . . . . 18 (((card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘) ∧ 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (𝐵𝑚))
112 sdomentr 8635 . . . . . . . . . . . . . . . . . 18 (((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ≈ (card‘(𝐵𝑚))) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)))
113111, 112sylan 583 . . . . . . . . . . . . . . . . 17 ((((card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘) ∧ 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) ∧ (𝐵𝑚) ≈ (card‘(𝐵𝑚))) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)))
114105, 106, 110, 113syl21anc 836 . . . . . . . . . . . . . . . 16 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)))
115 cardon 9357 . . . . . . . . . . . . . . . . . 18 (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ On
116 cardon 9357 . . . . . . . . . . . . . . . . . . 19 (card‘(𝐵𝑚)) ∈ On
117 onenon 9362 . . . . . . . . . . . . . . . . . . 19 ((card‘(𝐵𝑚)) ∈ On → (card‘(𝐵𝑚)) ∈ dom card)
118116, 117ax-mp 5 . . . . . . . . . . . . . . . . . 18 (card‘(𝐵𝑚)) ∈ dom card
119 cardsdomel 9387 . . . . . . . . . . . . . . . . . 18 (((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ On ∧ (card‘(𝐵𝑚)) ∈ dom card) → ((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(card‘(𝐵𝑚)))))
120115, 118, 119mp2an 691 . . . . . . . . . . . . . . . . 17 ((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(card‘(𝐵𝑚))))
121 cardidm 9372 . . . . . . . . . . . . . . . . . 18 (card‘(card‘(𝐵𝑚))) = (card‘(𝐵𝑚))
122121eleq2i 2881 . . . . . . . . . . . . . . . . 17 ((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(card‘(𝐵𝑚))) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)))
123120, 122bitri 278 . . . . . . . . . . . . . . . 16 ((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)))
124114, 123sylib 221 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)))
125 nnaordr 8229 . . . . . . . . . . . . . . . 16 (((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω) → ((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)) ↔ ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ∈ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚)))))
126125biimpa 480 . . . . . . . . . . . . . . 15 ((((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω) ∧ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚))) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ∈ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
127101, 103, 103, 124, 126syl31anc 1370 . . . . . . . . . . . . . 14 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ∈ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
128 nnacl 8220 . . . . . . . . . . . . . . . . 17 (((card‘(𝐵𝑚)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω) → ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))) ∈ ω)
129102, 102, 128syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝐵𝑚) ∈ Fin → ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))) ∈ ω)
130 cardnn 9376 . . . . . . . . . . . . . . . 16 (((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))) ∈ ω → (card‘((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚)))) = ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
131129, 130syl 17 . . . . . . . . . . . . . . 15 ((𝐵𝑚) ∈ Fin → (card‘((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚)))) = ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
132131adantl 485 . . . . . . . . . . . . . 14 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚)))) = ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
133127, 132eleqtrrd 2893 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ∈ (card‘((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚)))))
134 cardsdomelir 9386 . . . . . . . . . . . . 13 (((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ∈ (card‘((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚)))) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ≺ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
135133, 134syl 17 . . . . . . . . . . . 12 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ≺ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
136 ensdomtr 8637 . . . . . . . . . . . 12 ((( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≈ ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ∧ ((card‘ 𝑘𝑚 (𝐵𝑘)) +o (card‘(𝐵𝑚))) ≺ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚)))) → ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≺ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
13799, 135, 136syl2anc 587 . . . . . . . . . . 11 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≺ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
138 cardadju 9605 . . . . . . . . . . . . . 14 (((𝐵𝑚) ∈ dom card ∧ (𝐵𝑚) ∈ dom card) → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
13996, 96, 138syl2anc 587 . . . . . . . . . . . . 13 ((𝐵𝑚) ∈ Fin → ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))))
140139ensymd 8543 . . . . . . . . . . . 12 ((𝐵𝑚) ∈ Fin → ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))) ≈ ((𝐵𝑚) ⊔ (𝐵𝑚)))
141140adantl 485 . . . . . . . . . . 11 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))) ≈ ((𝐵𝑚) ⊔ (𝐵𝑚)))
142 sdomentr 8635 . . . . . . . . . . 11 ((( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≺ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))) ∧ ((card‘(𝐵𝑚)) +o (card‘(𝐵𝑚))) ≈ ((𝐵𝑚) ⊔ (𝐵𝑚))) → ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚)))
143137, 141, 142syl2anc 587 . . . . . . . . . 10 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚)))
144 domsdomtr 8636 . . . . . . . . . 10 (( 𝑘 ∈ suc 𝑚(𝐵𝑘) ≼ ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ∧ ( 𝑘𝑚 (𝐵𝑘) ⊔ (𝐵𝑚)) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚))) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚)))
14589, 143, 144sylancr 590 . . . . . . . . 9 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚)))
146145expcom 417 . . . . . . . 8 ((𝐵𝑚) ∈ Fin → ( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚))))
14782, 146syl 17 . . . . . . 7 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚))))
148 sdomentr 8635 . . . . . . . 8 (( 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚)) ∧ ((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝐵‘suc 𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))
149148expcom 417 . . . . . . 7 (((𝐵𝑚) ⊔ (𝐵𝑚)) ≈ (𝐵‘suc 𝑚) → ( 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) ⊔ (𝐵𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
15072, 147, 149sylsyld 61 . . . . . 6 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
15138, 150syld 47 . . . . 5 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
152151ex 416 . . . 4 (𝑚 ∈ ω → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))))
153152com23 86 . . 3 (𝑚 ∈ ω → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))))
1546, 12, 18, 32, 153finds1 7592 . 2 (𝑛 ∈ ω → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)))
155154imp 410 1 ((𝑛 ∈ ω ∧ ∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘) → 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cun 3879  wss 3881  c0 4243  𝒫 cpw 4497   ciun 4881   class class class wbr 5030  dom cdm 5519  Ord word 6158  Oncon0 6159  suc csuc 6161  cfv 6324  (class class class)co 7135  ωcom 7560  1oc1o 8078   +o coa 8082  cen 8489  cdom 8490  csdm 8491  Fincfn 8492  cdju 9311  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352
This theorem is referenced by:  domtriomlem  9853
  Copyright terms: Public domain W3C validator