![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suctr | Structured version Visualization version GIF version |
Description: The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
suctr | ⊢ (Tr 𝐴 → Tr suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 6462 | . . . . . 6 ⊢ (𝑦 ∈ suc 𝐴 → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) | |
2 | trel 5292 | . . . . . . . 8 ⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | |
3 | 2 | expdimp 452 | . . . . . . 7 ⊢ ((Tr 𝐴 ∧ 𝑧 ∈ 𝑦) → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) |
4 | eleq2 2833 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
5 | 4 | biimpcd 249 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑦 → (𝑦 = 𝐴 → 𝑧 ∈ 𝐴)) |
6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((Tr 𝐴 ∧ 𝑧 ∈ 𝑦) → (𝑦 = 𝐴 → 𝑧 ∈ 𝐴)) |
7 | 3, 6 | jaod 858 | . . . . . 6 ⊢ ((Tr 𝐴 ∧ 𝑧 ∈ 𝑦) → ((𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) → 𝑧 ∈ 𝐴)) |
8 | 1, 7 | syl5 34 | . . . . 5 ⊢ ((Tr 𝐴 ∧ 𝑧 ∈ 𝑦) → (𝑦 ∈ suc 𝐴 → 𝑧 ∈ 𝐴)) |
9 | 8 | expimpd 453 | . . . 4 ⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ 𝐴)) |
10 | elelsuc 6468 | . . . 4 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) | |
11 | 9, 10 | syl6 35 | . . 3 ⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) |
12 | 11 | alrimivv 1927 | . 2 ⊢ (Tr 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) |
13 | dftr2 5285 | . 2 ⊢ (Tr suc 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) | |
14 | 12, 13 | sylibr 234 | 1 ⊢ (Tr 𝐴 → Tr suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Tr wtr 5283 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-uni 4932 df-tr 5284 df-suc 6401 |
This theorem is referenced by: ordsuci 7844 dfon2lem3 35749 dfon2lem7 35753 dford3lem2 42984 |
Copyright terms: Public domain | W3C validator |