MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccdif Structured version   Visualization version   GIF version

Theorem uniiccdif 25095
Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypothesis
Ref Expression
uniioombl.1 (πœ‘ β†’ 𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
Assertion
Ref Expression
uniiccdif (πœ‘ β†’ (βˆͺ ran ((,) ∘ 𝐹) βŠ† βˆͺ ran ([,] ∘ 𝐹) ∧ (vol*β€˜(βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹))) = 0))

Proof of Theorem uniiccdif
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ssun1 4173 . . 3 βˆͺ ran ((,) ∘ 𝐹) βŠ† (βˆͺ ran ((,) ∘ 𝐹) βˆͺ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)))
2 uniioombl.1 . . . . . . . 8 (πœ‘ β†’ 𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
3 ovolfcl 24983 . . . . . . . 8 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ π‘₯ ∈ β„•) β†’ ((1st β€˜(πΉβ€˜π‘₯)) ∈ ℝ ∧ (2nd β€˜(πΉβ€˜π‘₯)) ∈ ℝ ∧ (1st β€˜(πΉβ€˜π‘₯)) ≀ (2nd β€˜(πΉβ€˜π‘₯))))
42, 3sylan 581 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((1st β€˜(πΉβ€˜π‘₯)) ∈ ℝ ∧ (2nd β€˜(πΉβ€˜π‘₯)) ∈ ℝ ∧ (1st β€˜(πΉβ€˜π‘₯)) ≀ (2nd β€˜(πΉβ€˜π‘₯))))
5 rexr 11260 . . . . . . . 8 ((1st β€˜(πΉβ€˜π‘₯)) ∈ ℝ β†’ (1st β€˜(πΉβ€˜π‘₯)) ∈ ℝ*)
6 rexr 11260 . . . . . . . 8 ((2nd β€˜(πΉβ€˜π‘₯)) ∈ ℝ β†’ (2nd β€˜(πΉβ€˜π‘₯)) ∈ ℝ*)
7 id 22 . . . . . . . 8 ((1st β€˜(πΉβ€˜π‘₯)) ≀ (2nd β€˜(πΉβ€˜π‘₯)) β†’ (1st β€˜(πΉβ€˜π‘₯)) ≀ (2nd β€˜(πΉβ€˜π‘₯)))
8 prunioo 13458 . . . . . . . 8 (((1st β€˜(πΉβ€˜π‘₯)) ∈ ℝ* ∧ (2nd β€˜(πΉβ€˜π‘₯)) ∈ ℝ* ∧ (1st β€˜(πΉβ€˜π‘₯)) ≀ (2nd β€˜(πΉβ€˜π‘₯))) β†’ (((1st β€˜(πΉβ€˜π‘₯))(,)(2nd β€˜(πΉβ€˜π‘₯))) βˆͺ {(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))}) = ((1st β€˜(πΉβ€˜π‘₯))[,](2nd β€˜(πΉβ€˜π‘₯))))
95, 6, 7, 8syl3an 1161 . . . . . . 7 (((1st β€˜(πΉβ€˜π‘₯)) ∈ ℝ ∧ (2nd β€˜(πΉβ€˜π‘₯)) ∈ ℝ ∧ (1st β€˜(πΉβ€˜π‘₯)) ≀ (2nd β€˜(πΉβ€˜π‘₯))) β†’ (((1st β€˜(πΉβ€˜π‘₯))(,)(2nd β€˜(πΉβ€˜π‘₯))) βˆͺ {(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))}) = ((1st β€˜(πΉβ€˜π‘₯))[,](2nd β€˜(πΉβ€˜π‘₯))))
104, 9syl 17 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (((1st β€˜(πΉβ€˜π‘₯))(,)(2nd β€˜(πΉβ€˜π‘₯))) βˆͺ {(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))}) = ((1st β€˜(πΉβ€˜π‘₯))[,](2nd β€˜(πΉβ€˜π‘₯))))
11 fvco3 6991 . . . . . . . . 9 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ π‘₯ ∈ β„•) β†’ (((,) ∘ 𝐹)β€˜π‘₯) = ((,)β€˜(πΉβ€˜π‘₯)))
122, 11sylan 581 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (((,) ∘ 𝐹)β€˜π‘₯) = ((,)β€˜(πΉβ€˜π‘₯)))
132ffvelcdmda 7087 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (πΉβ€˜π‘₯) ∈ ( ≀ ∩ (ℝ Γ— ℝ)))
1413elin2d 4200 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (πΉβ€˜π‘₯) ∈ (ℝ Γ— ℝ))
15 1st2nd2 8014 . . . . . . . . . . 11 ((πΉβ€˜π‘₯) ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘₯) = ⟨(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))⟩)
1614, 15syl 17 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (πΉβ€˜π‘₯) = ⟨(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))⟩)
1716fveq2d 6896 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((,)β€˜(πΉβ€˜π‘₯)) = ((,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))⟩))
18 df-ov 7412 . . . . . . . . 9 ((1st β€˜(πΉβ€˜π‘₯))(,)(2nd β€˜(πΉβ€˜π‘₯))) = ((,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))⟩)
1917, 18eqtr4di 2791 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((,)β€˜(πΉβ€˜π‘₯)) = ((1st β€˜(πΉβ€˜π‘₯))(,)(2nd β€˜(πΉβ€˜π‘₯))))
2012, 19eqtrd 2773 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (((,) ∘ 𝐹)β€˜π‘₯) = ((1st β€˜(πΉβ€˜π‘₯))(,)(2nd β€˜(πΉβ€˜π‘₯))))
21 df-pr 4632 . . . . . . . 8 {((1st ∘ 𝐹)β€˜π‘₯), ((2nd ∘ 𝐹)β€˜π‘₯)} = ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)})
22 fvco3 6991 . . . . . . . . . 10 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ π‘₯ ∈ β„•) β†’ ((1st ∘ 𝐹)β€˜π‘₯) = (1st β€˜(πΉβ€˜π‘₯)))
232, 22sylan 581 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((1st ∘ 𝐹)β€˜π‘₯) = (1st β€˜(πΉβ€˜π‘₯)))
24 fvco3 6991 . . . . . . . . . 10 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ π‘₯ ∈ β„•) β†’ ((2nd ∘ 𝐹)β€˜π‘₯) = (2nd β€˜(πΉβ€˜π‘₯)))
252, 24sylan 581 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((2nd ∘ 𝐹)β€˜π‘₯) = (2nd β€˜(πΉβ€˜π‘₯)))
2623, 25preq12d 4746 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ {((1st ∘ 𝐹)β€˜π‘₯), ((2nd ∘ 𝐹)β€˜π‘₯)} = {(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))})
2721, 26eqtr3id 2787 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)}) = {(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))})
2820, 27uneq12d 4165 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((((,) ∘ 𝐹)β€˜π‘₯) βˆͺ ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)})) = (((1st β€˜(πΉβ€˜π‘₯))(,)(2nd β€˜(πΉβ€˜π‘₯))) βˆͺ {(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))}))
29 fvco3 6991 . . . . . . . 8 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ π‘₯ ∈ β„•) β†’ (([,] ∘ 𝐹)β€˜π‘₯) = ([,]β€˜(πΉβ€˜π‘₯)))
302, 29sylan 581 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (([,] ∘ 𝐹)β€˜π‘₯) = ([,]β€˜(πΉβ€˜π‘₯)))
3116fveq2d 6896 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ([,]β€˜(πΉβ€˜π‘₯)) = ([,]β€˜βŸ¨(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))⟩))
32 df-ov 7412 . . . . . . . 8 ((1st β€˜(πΉβ€˜π‘₯))[,](2nd β€˜(πΉβ€˜π‘₯))) = ([,]β€˜βŸ¨(1st β€˜(πΉβ€˜π‘₯)), (2nd β€˜(πΉβ€˜π‘₯))⟩)
3331, 32eqtr4di 2791 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ([,]β€˜(πΉβ€˜π‘₯)) = ((1st β€˜(πΉβ€˜π‘₯))[,](2nd β€˜(πΉβ€˜π‘₯))))
3430, 33eqtrd 2773 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (([,] ∘ 𝐹)β€˜π‘₯) = ((1st β€˜(πΉβ€˜π‘₯))[,](2nd β€˜(πΉβ€˜π‘₯))))
3510, 28, 343eqtr4rd 2784 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ (([,] ∘ 𝐹)β€˜π‘₯) = ((((,) ∘ 𝐹)β€˜π‘₯) βˆͺ ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)})))
3635iuneq2dv 5022 . . . 4 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• (([,] ∘ 𝐹)β€˜π‘₯) = βˆͺ π‘₯ ∈ β„• ((((,) ∘ 𝐹)β€˜π‘₯) βˆͺ ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)})))
37 iccf 13425 . . . . . . 7 [,]:(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*
38 ffn 6718 . . . . . . 7 ([,]:(ℝ* Γ— ℝ*)βŸΆπ’« ℝ* β†’ [,] Fn (ℝ* Γ— ℝ*))
3937, 38ax-mp 5 . . . . . 6 [,] Fn (ℝ* Γ— ℝ*)
40 inss2 4230 . . . . . . . 8 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ Γ— ℝ)
41 rexpssxrxp 11259 . . . . . . . 8 (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*)
4240, 41sstri 3992 . . . . . . 7 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ* Γ— ℝ*)
43 fss 6735 . . . . . . 7 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ* Γ— ℝ*)) β†’ 𝐹:β„•βŸΆ(ℝ* Γ— ℝ*))
442, 42, 43sylancl 587 . . . . . 6 (πœ‘ β†’ 𝐹:β„•βŸΆ(ℝ* Γ— ℝ*))
45 fnfco 6757 . . . . . 6 (([,] Fn (ℝ* Γ— ℝ*) ∧ 𝐹:β„•βŸΆ(ℝ* Γ— ℝ*)) β†’ ([,] ∘ 𝐹) Fn β„•)
4639, 44, 45sylancr 588 . . . . 5 (πœ‘ β†’ ([,] ∘ 𝐹) Fn β„•)
47 fniunfv 7246 . . . . 5 (([,] ∘ 𝐹) Fn β„• β†’ βˆͺ π‘₯ ∈ β„• (([,] ∘ 𝐹)β€˜π‘₯) = βˆͺ ran ([,] ∘ 𝐹))
4846, 47syl 17 . . . 4 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• (([,] ∘ 𝐹)β€˜π‘₯) = βˆͺ ran ([,] ∘ 𝐹))
49 iunun 5097 . . . . 5 βˆͺ π‘₯ ∈ β„• ((((,) ∘ 𝐹)β€˜π‘₯) βˆͺ ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)})) = (βˆͺ π‘₯ ∈ β„• (((,) ∘ 𝐹)β€˜π‘₯) βˆͺ βˆͺ π‘₯ ∈ β„• ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)}))
50 ioof 13424 . . . . . . . . 9 (,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ
51 ffn 6718 . . . . . . . . 9 ((,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ β†’ (,) Fn (ℝ* Γ— ℝ*))
5250, 51ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* Γ— ℝ*)
53 fnfco 6757 . . . . . . . 8 (((,) Fn (ℝ* Γ— ℝ*) ∧ 𝐹:β„•βŸΆ(ℝ* Γ— ℝ*)) β†’ ((,) ∘ 𝐹) Fn β„•)
5452, 44, 53sylancr 588 . . . . . . 7 (πœ‘ β†’ ((,) ∘ 𝐹) Fn β„•)
55 fniunfv 7246 . . . . . . 7 (((,) ∘ 𝐹) Fn β„• β†’ βˆͺ π‘₯ ∈ β„• (((,) ∘ 𝐹)β€˜π‘₯) = βˆͺ ran ((,) ∘ 𝐹))
5654, 55syl 17 . . . . . 6 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• (((,) ∘ 𝐹)β€˜π‘₯) = βˆͺ ran ((,) ∘ 𝐹))
57 iunun 5097 . . . . . . 7 βˆͺ π‘₯ ∈ β„• ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)}) = (βˆͺ π‘₯ ∈ β„• {((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ βˆͺ π‘₯ ∈ β„• {((2nd ∘ 𝐹)β€˜π‘₯)})
58 fo1st 7995 . . . . . . . . . . . . . 14 1st :V–ontoβ†’V
59 fofn 6808 . . . . . . . . . . . . . 14 (1st :V–ontoβ†’V β†’ 1st Fn V)
6058, 59ax-mp 5 . . . . . . . . . . . . 13 1st Fn V
61 ssv 4007 . . . . . . . . . . . . . 14 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† V
62 fss 6735 . . . . . . . . . . . . . 14 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† V) β†’ 𝐹:β„•βŸΆV)
632, 61, 62sylancl 587 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐹:β„•βŸΆV)
64 fnfco 6757 . . . . . . . . . . . . 13 ((1st Fn V ∧ 𝐹:β„•βŸΆV) β†’ (1st ∘ 𝐹) Fn β„•)
6560, 63, 64sylancr 588 . . . . . . . . . . . 12 (πœ‘ β†’ (1st ∘ 𝐹) Fn β„•)
66 fnfun 6650 . . . . . . . . . . . 12 ((1st ∘ 𝐹) Fn β„• β†’ Fun (1st ∘ 𝐹))
6765, 66syl 17 . . . . . . . . . . 11 (πœ‘ β†’ Fun (1st ∘ 𝐹))
68 fndm 6653 . . . . . . . . . . . 12 ((1st ∘ 𝐹) Fn β„• β†’ dom (1st ∘ 𝐹) = β„•)
69 eqimss2 4042 . . . . . . . . . . . 12 (dom (1st ∘ 𝐹) = β„• β†’ β„• βŠ† dom (1st ∘ 𝐹))
7065, 68, 693syl 18 . . . . . . . . . . 11 (πœ‘ β†’ β„• βŠ† dom (1st ∘ 𝐹))
71 dfimafn2 6956 . . . . . . . . . . 11 ((Fun (1st ∘ 𝐹) ∧ β„• βŠ† dom (1st ∘ 𝐹)) β†’ ((1st ∘ 𝐹) β€œ β„•) = βˆͺ π‘₯ ∈ β„• {((1st ∘ 𝐹)β€˜π‘₯)})
7267, 70, 71syl2anc 585 . . . . . . . . . 10 (πœ‘ β†’ ((1st ∘ 𝐹) β€œ β„•) = βˆͺ π‘₯ ∈ β„• {((1st ∘ 𝐹)β€˜π‘₯)})
73 fnima 6681 . . . . . . . . . . 11 ((1st ∘ 𝐹) Fn β„• β†’ ((1st ∘ 𝐹) β€œ β„•) = ran (1st ∘ 𝐹))
7465, 73syl 17 . . . . . . . . . 10 (πœ‘ β†’ ((1st ∘ 𝐹) β€œ β„•) = ran (1st ∘ 𝐹))
7572, 74eqtr3d 2775 . . . . . . . . 9 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• {((1st ∘ 𝐹)β€˜π‘₯)} = ran (1st ∘ 𝐹))
76 rnco2 6253 . . . . . . . . 9 ran (1st ∘ 𝐹) = (1st β€œ ran 𝐹)
7775, 76eqtrdi 2789 . . . . . . . 8 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• {((1st ∘ 𝐹)β€˜π‘₯)} = (1st β€œ ran 𝐹))
78 fo2nd 7996 . . . . . . . . . . . . . 14 2nd :V–ontoβ†’V
79 fofn 6808 . . . . . . . . . . . . . 14 (2nd :V–ontoβ†’V β†’ 2nd Fn V)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 2nd Fn V
81 fnfco 6757 . . . . . . . . . . . . 13 ((2nd Fn V ∧ 𝐹:β„•βŸΆV) β†’ (2nd ∘ 𝐹) Fn β„•)
8280, 63, 81sylancr 588 . . . . . . . . . . . 12 (πœ‘ β†’ (2nd ∘ 𝐹) Fn β„•)
83 fnfun 6650 . . . . . . . . . . . 12 ((2nd ∘ 𝐹) Fn β„• β†’ Fun (2nd ∘ 𝐹))
8482, 83syl 17 . . . . . . . . . . 11 (πœ‘ β†’ Fun (2nd ∘ 𝐹))
85 fndm 6653 . . . . . . . . . . . 12 ((2nd ∘ 𝐹) Fn β„• β†’ dom (2nd ∘ 𝐹) = β„•)
86 eqimss2 4042 . . . . . . . . . . . 12 (dom (2nd ∘ 𝐹) = β„• β†’ β„• βŠ† dom (2nd ∘ 𝐹))
8782, 85, 863syl 18 . . . . . . . . . . 11 (πœ‘ β†’ β„• βŠ† dom (2nd ∘ 𝐹))
88 dfimafn2 6956 . . . . . . . . . . 11 ((Fun (2nd ∘ 𝐹) ∧ β„• βŠ† dom (2nd ∘ 𝐹)) β†’ ((2nd ∘ 𝐹) β€œ β„•) = βˆͺ π‘₯ ∈ β„• {((2nd ∘ 𝐹)β€˜π‘₯)})
8984, 87, 88syl2anc 585 . . . . . . . . . 10 (πœ‘ β†’ ((2nd ∘ 𝐹) β€œ β„•) = βˆͺ π‘₯ ∈ β„• {((2nd ∘ 𝐹)β€˜π‘₯)})
90 fnima 6681 . . . . . . . . . . 11 ((2nd ∘ 𝐹) Fn β„• β†’ ((2nd ∘ 𝐹) β€œ β„•) = ran (2nd ∘ 𝐹))
9182, 90syl 17 . . . . . . . . . 10 (πœ‘ β†’ ((2nd ∘ 𝐹) β€œ β„•) = ran (2nd ∘ 𝐹))
9289, 91eqtr3d 2775 . . . . . . . . 9 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• {((2nd ∘ 𝐹)β€˜π‘₯)} = ran (2nd ∘ 𝐹))
93 rnco2 6253 . . . . . . . . 9 ran (2nd ∘ 𝐹) = (2nd β€œ ran 𝐹)
9492, 93eqtrdi 2789 . . . . . . . 8 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• {((2nd ∘ 𝐹)β€˜π‘₯)} = (2nd β€œ ran 𝐹))
9577, 94uneq12d 4165 . . . . . . 7 (πœ‘ β†’ (βˆͺ π‘₯ ∈ β„• {((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ βˆͺ π‘₯ ∈ β„• {((2nd ∘ 𝐹)β€˜π‘₯)}) = ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)))
9657, 95eqtrid 2785 . . . . . 6 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)}) = ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)))
9756, 96uneq12d 4165 . . . . 5 (πœ‘ β†’ (βˆͺ π‘₯ ∈ β„• (((,) ∘ 𝐹)β€˜π‘₯) βˆͺ βˆͺ π‘₯ ∈ β„• ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)})) = (βˆͺ ran ((,) ∘ 𝐹) βˆͺ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹))))
9849, 97eqtrid 2785 . . . 4 (πœ‘ β†’ βˆͺ π‘₯ ∈ β„• ((((,) ∘ 𝐹)β€˜π‘₯) βˆͺ ({((1st ∘ 𝐹)β€˜π‘₯)} βˆͺ {((2nd ∘ 𝐹)β€˜π‘₯)})) = (βˆͺ ran ((,) ∘ 𝐹) βˆͺ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹))))
9936, 48, 983eqtr3d 2781 . . 3 (πœ‘ β†’ βˆͺ ran ([,] ∘ 𝐹) = (βˆͺ ran ((,) ∘ 𝐹) βˆͺ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹))))
1001, 99sseqtrrid 4036 . 2 (πœ‘ β†’ βˆͺ ran ((,) ∘ 𝐹) βŠ† βˆͺ ran ([,] ∘ 𝐹))
101 ovolficcss 24986 . . . . 5 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ βˆͺ ran ([,] ∘ 𝐹) βŠ† ℝ)
1022, 101syl 17 . . . 4 (πœ‘ β†’ βˆͺ ran ([,] ∘ 𝐹) βŠ† ℝ)
103102ssdifssd 4143 . . 3 (πœ‘ β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) βŠ† ℝ)
104 omelon 9641 . . . . . . . . . . 11 Ο‰ ∈ On
105 nnenom 13945 . . . . . . . . . . . 12 β„• β‰ˆ Ο‰
106105ensymi 9000 . . . . . . . . . . 11 Ο‰ β‰ˆ β„•
107 isnumi 9941 . . . . . . . . . . 11 ((Ο‰ ∈ On ∧ Ο‰ β‰ˆ β„•) β†’ β„• ∈ dom card)
108104, 106, 107mp2an 691 . . . . . . . . . 10 β„• ∈ dom card
109 fofun 6807 . . . . . . . . . . . . 13 (1st :V–ontoβ†’V β†’ Fun 1st )
11058, 109ax-mp 5 . . . . . . . . . . . 12 Fun 1st
111 ssv 4007 . . . . . . . . . . . . 13 ran 𝐹 βŠ† V
112 fof 6806 . . . . . . . . . . . . . . 15 (1st :V–ontoβ†’V β†’ 1st :V⟢V)
11358, 112ax-mp 5 . . . . . . . . . . . . . 14 1st :V⟢V
114113fdmi 6730 . . . . . . . . . . . . 13 dom 1st = V
115111, 114sseqtrri 4020 . . . . . . . . . . . 12 ran 𝐹 βŠ† dom 1st
116 fores 6816 . . . . . . . . . . . 12 ((Fun 1st ∧ ran 𝐹 βŠ† dom 1st ) β†’ (1st β†Ύ ran 𝐹):ran 𝐹–ontoβ†’(1st β€œ ran 𝐹))
117110, 115, 116mp2an 691 . . . . . . . . . . 11 (1st β†Ύ ran 𝐹):ran 𝐹–ontoβ†’(1st β€œ ran 𝐹)
1182ffnd 6719 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐹 Fn β„•)
119 dffn4 6812 . . . . . . . . . . . 12 (𝐹 Fn β„• ↔ 𝐹:ℕ–ontoβ†’ran 𝐹)
120118, 119sylib 217 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:ℕ–ontoβ†’ran 𝐹)
121 foco 6820 . . . . . . . . . . 11 (((1st β†Ύ ran 𝐹):ran 𝐹–ontoβ†’(1st β€œ ran 𝐹) ∧ 𝐹:ℕ–ontoβ†’ran 𝐹) β†’ ((1st β†Ύ ran 𝐹) ∘ 𝐹):ℕ–ontoβ†’(1st β€œ ran 𝐹))
122117, 120, 121sylancr 588 . . . . . . . . . 10 (πœ‘ β†’ ((1st β†Ύ ran 𝐹) ∘ 𝐹):ℕ–ontoβ†’(1st β€œ ran 𝐹))
123 fodomnum 10052 . . . . . . . . . 10 (β„• ∈ dom card β†’ (((1st β†Ύ ran 𝐹) ∘ 𝐹):ℕ–ontoβ†’(1st β€œ ran 𝐹) β†’ (1st β€œ ran 𝐹) β‰Ό β„•))
124108, 122, 123mpsyl 68 . . . . . . . . 9 (πœ‘ β†’ (1st β€œ ran 𝐹) β‰Ό β„•)
125 domentr 9009 . . . . . . . . 9 (((1st β€œ ran 𝐹) β‰Ό β„• ∧ β„• β‰ˆ Ο‰) β†’ (1st β€œ ran 𝐹) β‰Ό Ο‰)
126124, 105, 125sylancl 587 . . . . . . . 8 (πœ‘ β†’ (1st β€œ ran 𝐹) β‰Ό Ο‰)
127 fofun 6807 . . . . . . . . . . . . 13 (2nd :V–ontoβ†’V β†’ Fun 2nd )
12878, 127ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
129 fof 6806 . . . . . . . . . . . . . . 15 (2nd :V–ontoβ†’V β†’ 2nd :V⟢V)
13078, 129ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟢V
131130fdmi 6730 . . . . . . . . . . . . 13 dom 2nd = V
132111, 131sseqtrri 4020 . . . . . . . . . . . 12 ran 𝐹 βŠ† dom 2nd
133 fores 6816 . . . . . . . . . . . 12 ((Fun 2nd ∧ ran 𝐹 βŠ† dom 2nd ) β†’ (2nd β†Ύ ran 𝐹):ran 𝐹–ontoβ†’(2nd β€œ ran 𝐹))
134128, 132, 133mp2an 691 . . . . . . . . . . 11 (2nd β†Ύ ran 𝐹):ran 𝐹–ontoβ†’(2nd β€œ ran 𝐹)
135 foco 6820 . . . . . . . . . . 11 (((2nd β†Ύ ran 𝐹):ran 𝐹–ontoβ†’(2nd β€œ ran 𝐹) ∧ 𝐹:ℕ–ontoβ†’ran 𝐹) β†’ ((2nd β†Ύ ran 𝐹) ∘ 𝐹):ℕ–ontoβ†’(2nd β€œ ran 𝐹))
136134, 120, 135sylancr 588 . . . . . . . . . 10 (πœ‘ β†’ ((2nd β†Ύ ran 𝐹) ∘ 𝐹):ℕ–ontoβ†’(2nd β€œ ran 𝐹))
137 fodomnum 10052 . . . . . . . . . 10 (β„• ∈ dom card β†’ (((2nd β†Ύ ran 𝐹) ∘ 𝐹):ℕ–ontoβ†’(2nd β€œ ran 𝐹) β†’ (2nd β€œ ran 𝐹) β‰Ό β„•))
138108, 136, 137mpsyl 68 . . . . . . . . 9 (πœ‘ β†’ (2nd β€œ ran 𝐹) β‰Ό β„•)
139 domentr 9009 . . . . . . . . 9 (((2nd β€œ ran 𝐹) β‰Ό β„• ∧ β„• β‰ˆ Ο‰) β†’ (2nd β€œ ran 𝐹) β‰Ό Ο‰)
140138, 105, 139sylancl 587 . . . . . . . 8 (πœ‘ β†’ (2nd β€œ ran 𝐹) β‰Ό Ο‰)
141 unctb 10200 . . . . . . . 8 (((1st β€œ ran 𝐹) β‰Ό Ο‰ ∧ (2nd β€œ ran 𝐹) β‰Ό Ο‰) β†’ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) β‰Ό Ο‰)
142126, 140, 141syl2anc 585 . . . . . . 7 (πœ‘ β†’ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) β‰Ό Ο‰)
143 ctex 8959 . . . . . . 7 (((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) β‰Ό Ο‰ β†’ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) ∈ V)
144142, 143syl 17 . . . . . 6 (πœ‘ β†’ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) ∈ V)
145 ssid 4005 . . . . . . . 8 βˆͺ ran ([,] ∘ 𝐹) βŠ† βˆͺ ran ([,] ∘ 𝐹)
146145, 99sseqtrid 4035 . . . . . . 7 (πœ‘ β†’ βˆͺ ran ([,] ∘ 𝐹) βŠ† (βˆͺ ran ((,) ∘ 𝐹) βˆͺ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹))))
147 ssundif 4488 . . . . . . 7 (βˆͺ ran ([,] ∘ 𝐹) βŠ† (βˆͺ ran ((,) ∘ 𝐹) βˆͺ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹))) ↔ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) βŠ† ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)))
148146, 147sylib 217 . . . . . 6 (πœ‘ β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) βŠ† ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)))
149 ssdomg 8996 . . . . . 6 (((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) ∈ V β†’ ((βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) βŠ† ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹))))
150144, 148, 149sylc 65 . . . . 5 (πœ‘ β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)))
151 domtr 9003 . . . . 5 (((βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) ∧ ((1st β€œ ran 𝐹) βˆͺ (2nd β€œ ran 𝐹)) β‰Ό Ο‰) β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό Ο‰)
152150, 142, 151syl2anc 585 . . . 4 (πœ‘ β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό Ο‰)
153 domentr 9009 . . . 4 (((βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό Ο‰ ∧ Ο‰ β‰ˆ β„•) β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό β„•)
154152, 106, 153sylancl 587 . . 3 (πœ‘ β†’ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό β„•)
155 ovolctb2 25009 . . 3 (((βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) βŠ† ℝ ∧ (βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹)) β‰Ό β„•) β†’ (vol*β€˜(βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹))) = 0)
156103, 154, 155syl2anc 585 . 2 (πœ‘ β†’ (vol*β€˜(βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹))) = 0)
157100, 156jca 513 1 (πœ‘ β†’ (βˆͺ ran ((,) ∘ 𝐹) βŠ† βˆͺ ran ([,] ∘ 𝐹) ∧ (vol*β€˜(βˆͺ ran ([,] ∘ 𝐹) βˆ– βˆͺ ran ((,) ∘ 𝐹))) = 0))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3475   βˆ– cdif 3946   βˆͺ cun 3947   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  {csn 4629  {cpr 4631  βŸ¨cop 4635  βˆͺ cuni 4909  βˆͺ ciun 4998   class class class wbr 5149   Γ— cxp 5675  dom cdm 5677  ran crn 5678   β†Ύ cres 5679   β€œ cima 5680   ∘ ccom 5681  Oncon0 6365  Fun wfun 6538   Fn wfn 6539  βŸΆwf 6540  β€“ontoβ†’wfo 6542  β€˜cfv 6544  (class class class)co 7409  Ο‰com 7855  1st c1st 7973  2nd c2nd 7974   β‰ˆ cen 8936   β‰Ό cdom 8937  cardccrd 9930  β„cr 11109  0cc0 11110  β„*cxr 11247   ≀ cle 11249  β„•cn 12212  (,)cioo 13324  [,]cicc 13327  vol*covol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xadd 13093  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-xmet 20937  df-met 20938  df-ovol 24981
This theorem is referenced by:  uniioombllem3  25102  uniioombllem4  25103  uniioombllem5  25104  uniiccmbl  25107
  Copyright terms: Public domain W3C validator