MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccdif Structured version   Visualization version   GIF version

Theorem uniiccdif 24742
Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypothesis
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
uniiccdif (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))

Proof of Theorem uniiccdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 4106 . . 3 ran ((,) ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
2 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolfcl 24630 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
42, 3sylan 580 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
5 rexr 11021 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ∈ ℝ → (1st ‘(𝐹𝑥)) ∈ ℝ*)
6 rexr 11021 . . . . . . . 8 ((2nd ‘(𝐹𝑥)) ∈ ℝ → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
7 id 22 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)) → (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)))
8 prunioo 13213 . . . . . . . 8 (((1st ‘(𝐹𝑥)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ* ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
95, 6, 7, 8syl3an 1159 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
104, 9syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
11 fvco3 6867 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
122, 11sylan 580 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
132ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
1413elin2d 4133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
15 1st2nd2 7870 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1716fveq2d 6778 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
18 df-ov 7278 . . . . . . . . 9 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1917, 18eqtr4di 2796 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
2012, 19eqtrd 2778 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
21 df-pr 4564 . . . . . . . 8 {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})
22 fvco3 6867 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
232, 22sylan 580 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
24 fvco3 6867 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
252, 24sylan 580 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
2623, 25preq12d 4677 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2721, 26eqtr3id 2792 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2820, 27uneq12d 4098 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}))
29 fvco3 6867 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
302, 29sylan 580 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
3116fveq2d 6778 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
32 df-ov 7278 . . . . . . . 8 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3331, 32eqtr4di 2796 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3430, 33eqtrd 2778 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3510, 28, 343eqtr4rd 2789 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
3635iuneq2dv 4948 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
37 iccf 13180 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
38 ffn 6600 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
3937, 38ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
40 inss2 4163 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
41 rexpssxrxp 11020 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4240, 41sstri 3930 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
43 fss 6617 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
442, 42, 43sylancl 586 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
45 fnfco 6639 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
4639, 44, 45sylancr 587 . . . . 5 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
47 fniunfv 7120 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
4846, 47syl 17 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
49 iunun 5022 . . . . 5 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}))
50 ioof 13179 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
51 ffn 6600 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
5250, 51ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
53 fnfco 6639 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
5452, 44, 53sylancr 587 . . . . . . 7 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
55 fniunfv 7120 . . . . . . 7 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
5654, 55syl 17 . . . . . 6 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
57 iunun 5022 . . . . . . 7 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
58 fo1st 7851 . . . . . . . . . . . . . 14 1st :V–onto→V
59 fofn 6690 . . . . . . . . . . . . . 14 (1st :V–onto→V → 1st Fn V)
6058, 59ax-mp 5 . . . . . . . . . . . . 13 1st Fn V
61 ssv 3945 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ V
62 fss 6617 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ V) → 𝐹:ℕ⟶V)
632, 61, 62sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶V)
64 fnfco 6639 . . . . . . . . . . . . 13 ((1st Fn V ∧ 𝐹:ℕ⟶V) → (1st𝐹) Fn ℕ)
6560, 63, 64sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝐹) Fn ℕ)
66 fnfun 6533 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → Fun (1st𝐹))
6765, 66syl 17 . . . . . . . . . . 11 (𝜑 → Fun (1st𝐹))
68 fndm 6536 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → dom (1st𝐹) = ℕ)
69 eqimss2 3978 . . . . . . . . . . . 12 (dom (1st𝐹) = ℕ → ℕ ⊆ dom (1st𝐹))
7065, 68, 693syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (1st𝐹))
71 dfimafn2 6833 . . . . . . . . . . 11 ((Fun (1st𝐹) ∧ ℕ ⊆ dom (1st𝐹)) → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
7267, 70, 71syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
73 fnima 6563 . . . . . . . . . . 11 ((1st𝐹) Fn ℕ → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7465, 73syl 17 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7572, 74eqtr3d 2780 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = ran (1st𝐹))
76 rnco2 6157 . . . . . . . . 9 ran (1st𝐹) = (1st “ ran 𝐹)
7775, 76eqtrdi 2794 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = (1st “ ran 𝐹))
78 fo2nd 7852 . . . . . . . . . . . . . 14 2nd :V–onto→V
79 fofn 6690 . . . . . . . . . . . . . 14 (2nd :V–onto→V → 2nd Fn V)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 2nd Fn V
81 fnfco 6639 . . . . . . . . . . . . 13 ((2nd Fn V ∧ 𝐹:ℕ⟶V) → (2nd𝐹) Fn ℕ)
8280, 63, 81sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2nd𝐹) Fn ℕ)
83 fnfun 6533 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → Fun (2nd𝐹))
8482, 83syl 17 . . . . . . . . . . 11 (𝜑 → Fun (2nd𝐹))
85 fndm 6536 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → dom (2nd𝐹) = ℕ)
86 eqimss2 3978 . . . . . . . . . . . 12 (dom (2nd𝐹) = ℕ → ℕ ⊆ dom (2nd𝐹))
8782, 85, 863syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (2nd𝐹))
88 dfimafn2 6833 . . . . . . . . . . 11 ((Fun (2nd𝐹) ∧ ℕ ⊆ dom (2nd𝐹)) → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
8984, 87, 88syl2anc 584 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
90 fnima 6563 . . . . . . . . . . 11 ((2nd𝐹) Fn ℕ → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9182, 90syl 17 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9289, 91eqtr3d 2780 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = ran (2nd𝐹))
93 rnco2 6157 . . . . . . . . 9 ran (2nd𝐹) = (2nd “ ran 𝐹)
9492, 93eqtrdi 2794 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = (2nd “ ran 𝐹))
9577, 94uneq12d 4098 . . . . . . 7 (𝜑 → ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9657, 95eqtrid 2790 . . . . . 6 (𝜑 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9756, 96uneq12d 4098 . . . . 5 (𝜑 → ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9849, 97eqtrid 2790 . . . 4 (𝜑 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9936, 48, 983eqtr3d 2786 . . 3 (𝜑 ran ([,] ∘ 𝐹) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
1001, 99sseqtrrid 3974 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
101 ovolficcss 24633 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
1022, 101syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
103102ssdifssd 4077 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ)
104 omelon 9404 . . . . . . . . . . 11 ω ∈ On
105 nnenom 13700 . . . . . . . . . . . 12 ℕ ≈ ω
106105ensymi 8790 . . . . . . . . . . 11 ω ≈ ℕ
107 isnumi 9704 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
108104, 106, 107mp2an 689 . . . . . . . . . 10 ℕ ∈ dom card
109 fofun 6689 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
11058, 109ax-mp 5 . . . . . . . . . . . 12 Fun 1st
111 ssv 3945 . . . . . . . . . . . . 13 ran 𝐹 ⊆ V
112 fof 6688 . . . . . . . . . . . . . . 15 (1st :V–onto→V → 1st :V⟶V)
11358, 112ax-mp 5 . . . . . . . . . . . . . 14 1st :V⟶V
114113fdmi 6612 . . . . . . . . . . . . 13 dom 1st = V
115111, 114sseqtrri 3958 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 1st
116 fores 6698 . . . . . . . . . . . 12 ((Fun 1st ∧ ran 𝐹 ⊆ dom 1st ) → (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹))
117110, 115, 116mp2an 689 . . . . . . . . . . 11 (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹)
1182ffnd 6601 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
119 dffn4 6694 . . . . . . . . . . . 12 (𝐹 Fn ℕ ↔ 𝐹:ℕ–onto→ran 𝐹)
120118, 119sylib 217 . . . . . . . . . . 11 (𝜑𝐹:ℕ–onto→ran 𝐹)
121 foco 6702 . . . . . . . . . . 11 (((1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
122117, 120, 121sylancr 587 . . . . . . . . . 10 (𝜑 → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
123 fodomnum 9813 . . . . . . . . . 10 (ℕ ∈ dom card → (((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹) → (1st “ ran 𝐹) ≼ ℕ))
124108, 122, 123mpsyl 68 . . . . . . . . 9 (𝜑 → (1st “ ran 𝐹) ≼ ℕ)
125 domentr 8799 . . . . . . . . 9 (((1st “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (1st “ ran 𝐹) ≼ ω)
126124, 105, 125sylancl 586 . . . . . . . 8 (𝜑 → (1st “ ran 𝐹) ≼ ω)
127 fofun 6689 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
12878, 127ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
129 fof 6688 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd :V⟶V)
13078, 129ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟶V
131130fdmi 6612 . . . . . . . . . . . . 13 dom 2nd = V
132111, 131sseqtrri 3958 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 2nd
133 fores 6698 . . . . . . . . . . . 12 ((Fun 2nd ∧ ran 𝐹 ⊆ dom 2nd ) → (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹))
134128, 132, 133mp2an 689 . . . . . . . . . . 11 (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹)
135 foco 6702 . . . . . . . . . . 11 (((2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
136134, 120, 135sylancr 587 . . . . . . . . . 10 (𝜑 → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
137 fodomnum 9813 . . . . . . . . . 10 (ℕ ∈ dom card → (((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹) → (2nd “ ran 𝐹) ≼ ℕ))
138108, 136, 137mpsyl 68 . . . . . . . . 9 (𝜑 → (2nd “ ran 𝐹) ≼ ℕ)
139 domentr 8799 . . . . . . . . 9 (((2nd “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (2nd “ ran 𝐹) ≼ ω)
140138, 105, 139sylancl 586 . . . . . . . 8 (𝜑 → (2nd “ ran 𝐹) ≼ ω)
141 unctb 9961 . . . . . . . 8 (((1st “ ran 𝐹) ≼ ω ∧ (2nd “ ran 𝐹) ≼ ω) → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
142126, 140, 141syl2anc 584 . . . . . . 7 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
143 ctex 8753 . . . . . . 7 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
144142, 143syl 17 . . . . . 6 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
145 ssid 3943 . . . . . . . 8 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
146145, 99sseqtrid 3973 . . . . . . 7 (𝜑 ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
147 ssundif 4418 . . . . . . 7 ( ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))) ↔ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
148146, 147sylib 217 . . . . . 6 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
149 ssdomg 8786 . . . . . 6 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V → (( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
150144, 148, 149sylc 65 . . . . 5 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
151 domtr 8793 . . . . 5 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∧ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
152150, 142, 151syl2anc 584 . . . 4 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
153 domentr 8799 . . . 4 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω ∧ ω ≈ ℕ) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
154152, 106, 153sylancl 586 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
155 ovolctb2 24656 . . 3 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ) → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
156103, 154, 155syl2anc 584 . 2 (𝜑 → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
157100, 156jca 512 1 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  𝒫 cpw 4533  {csn 4561  {cpr 4563  cop 4567   cuni 4839   ciun 4924   class class class wbr 5074   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593  Oncon0 6266  Fun wfun 6427   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  ωcom 7712  1st c1st 7829  2nd c2nd 7830  cen 8730  cdom 8731  cardccrd 9693  cr 10870  0cc0 10871  *cxr 11008  cle 11010  cn 11973  (,)cioo 13079  [,]cicc 13082  vol*covol 24626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628
This theorem is referenced by:  uniioombllem3  24749  uniioombllem4  24750  uniioombllem5  24751  uniiccmbl  24754
  Copyright terms: Public domain W3C validator