MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccdif Structured version   Visualization version   GIF version

Theorem uniiccdif 25632
Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypothesis
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
uniiccdif (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))

Proof of Theorem uniiccdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 4201 . . 3 ran ((,) ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
2 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolfcl 25520 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
42, 3sylan 579 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
5 rexr 11336 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ∈ ℝ → (1st ‘(𝐹𝑥)) ∈ ℝ*)
6 rexr 11336 . . . . . . . 8 ((2nd ‘(𝐹𝑥)) ∈ ℝ → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
7 id 22 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)) → (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)))
8 prunioo 13541 . . . . . . . 8 (((1st ‘(𝐹𝑥)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ* ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
95, 6, 7, 8syl3an 1160 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
104, 9syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
11 fvco3 7021 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
122, 11sylan 579 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
132ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
1413elin2d 4228 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
15 1st2nd2 8069 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1716fveq2d 6924 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
18 df-ov 7451 . . . . . . . . 9 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1917, 18eqtr4di 2798 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
2012, 19eqtrd 2780 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
21 df-pr 4651 . . . . . . . 8 {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})
22 fvco3 7021 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
232, 22sylan 579 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
24 fvco3 7021 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
252, 24sylan 579 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
2623, 25preq12d 4766 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2721, 26eqtr3id 2794 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2820, 27uneq12d 4192 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}))
29 fvco3 7021 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
302, 29sylan 579 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
3116fveq2d 6924 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
32 df-ov 7451 . . . . . . . 8 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3331, 32eqtr4di 2798 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3430, 33eqtrd 2780 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3510, 28, 343eqtr4rd 2791 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
3635iuneq2dv 5039 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
37 iccf 13508 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
38 ffn 6747 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
3937, 38ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
40 inss2 4259 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
41 rexpssxrxp 11335 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4240, 41sstri 4018 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
43 fss 6763 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
442, 42, 43sylancl 585 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
45 fnfco 6786 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
4639, 44, 45sylancr 586 . . . . 5 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
47 fniunfv 7284 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
4846, 47syl 17 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
49 iunun 5116 . . . . 5 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}))
50 ioof 13507 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
51 ffn 6747 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
5250, 51ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
53 fnfco 6786 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
5452, 44, 53sylancr 586 . . . . . . 7 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
55 fniunfv 7284 . . . . . . 7 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
5654, 55syl 17 . . . . . 6 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
57 iunun 5116 . . . . . . 7 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
58 fo1st 8050 . . . . . . . . . . . . . 14 1st :V–onto→V
59 fofn 6836 . . . . . . . . . . . . . 14 (1st :V–onto→V → 1st Fn V)
6058, 59ax-mp 5 . . . . . . . . . . . . 13 1st Fn V
61 ssv 4033 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ V
62 fss 6763 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ V) → 𝐹:ℕ⟶V)
632, 61, 62sylancl 585 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶V)
64 fnfco 6786 . . . . . . . . . . . . 13 ((1st Fn V ∧ 𝐹:ℕ⟶V) → (1st𝐹) Fn ℕ)
6560, 63, 64sylancr 586 . . . . . . . . . . . 12 (𝜑 → (1st𝐹) Fn ℕ)
66 fnfun 6679 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → Fun (1st𝐹))
6765, 66syl 17 . . . . . . . . . . 11 (𝜑 → Fun (1st𝐹))
68 fndm 6682 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → dom (1st𝐹) = ℕ)
69 eqimss2 4068 . . . . . . . . . . . 12 (dom (1st𝐹) = ℕ → ℕ ⊆ dom (1st𝐹))
7065, 68, 693syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (1st𝐹))
71 dfimafn2 6985 . . . . . . . . . . 11 ((Fun (1st𝐹) ∧ ℕ ⊆ dom (1st𝐹)) → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
7267, 70, 71syl2anc 583 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
73 fnima 6710 . . . . . . . . . . 11 ((1st𝐹) Fn ℕ → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7465, 73syl 17 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7572, 74eqtr3d 2782 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = ran (1st𝐹))
76 rnco2 6284 . . . . . . . . 9 ran (1st𝐹) = (1st “ ran 𝐹)
7775, 76eqtrdi 2796 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = (1st “ ran 𝐹))
78 fo2nd 8051 . . . . . . . . . . . . . 14 2nd :V–onto→V
79 fofn 6836 . . . . . . . . . . . . . 14 (2nd :V–onto→V → 2nd Fn V)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 2nd Fn V
81 fnfco 6786 . . . . . . . . . . . . 13 ((2nd Fn V ∧ 𝐹:ℕ⟶V) → (2nd𝐹) Fn ℕ)
8280, 63, 81sylancr 586 . . . . . . . . . . . 12 (𝜑 → (2nd𝐹) Fn ℕ)
83 fnfun 6679 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → Fun (2nd𝐹))
8482, 83syl 17 . . . . . . . . . . 11 (𝜑 → Fun (2nd𝐹))
85 fndm 6682 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → dom (2nd𝐹) = ℕ)
86 eqimss2 4068 . . . . . . . . . . . 12 (dom (2nd𝐹) = ℕ → ℕ ⊆ dom (2nd𝐹))
8782, 85, 863syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (2nd𝐹))
88 dfimafn2 6985 . . . . . . . . . . 11 ((Fun (2nd𝐹) ∧ ℕ ⊆ dom (2nd𝐹)) → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
8984, 87, 88syl2anc 583 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
90 fnima 6710 . . . . . . . . . . 11 ((2nd𝐹) Fn ℕ → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9182, 90syl 17 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9289, 91eqtr3d 2782 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = ran (2nd𝐹))
93 rnco2 6284 . . . . . . . . 9 ran (2nd𝐹) = (2nd “ ran 𝐹)
9492, 93eqtrdi 2796 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = (2nd “ ran 𝐹))
9577, 94uneq12d 4192 . . . . . . 7 (𝜑 → ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9657, 95eqtrid 2792 . . . . . 6 (𝜑 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9756, 96uneq12d 4192 . . . . 5 (𝜑 → ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9849, 97eqtrid 2792 . . . 4 (𝜑 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9936, 48, 983eqtr3d 2788 . . 3 (𝜑 ran ([,] ∘ 𝐹) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
1001, 99sseqtrrid 4062 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
101 ovolficcss 25523 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
1022, 101syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
103102ssdifssd 4170 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ)
104 omelon 9715 . . . . . . . . . . 11 ω ∈ On
105 nnenom 14031 . . . . . . . . . . . 12 ℕ ≈ ω
106105ensymi 9064 . . . . . . . . . . 11 ω ≈ ℕ
107 isnumi 10015 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
108104, 106, 107mp2an 691 . . . . . . . . . 10 ℕ ∈ dom card
109 fofun 6835 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
11058, 109ax-mp 5 . . . . . . . . . . . 12 Fun 1st
111 ssv 4033 . . . . . . . . . . . . 13 ran 𝐹 ⊆ V
112 fof 6834 . . . . . . . . . . . . . . 15 (1st :V–onto→V → 1st :V⟶V)
11358, 112ax-mp 5 . . . . . . . . . . . . . 14 1st :V⟶V
114113fdmi 6758 . . . . . . . . . . . . 13 dom 1st = V
115111, 114sseqtrri 4046 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 1st
116 fores 6844 . . . . . . . . . . . 12 ((Fun 1st ∧ ran 𝐹 ⊆ dom 1st ) → (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹))
117110, 115, 116mp2an 691 . . . . . . . . . . 11 (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹)
1182ffnd 6748 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
119 dffn4 6840 . . . . . . . . . . . 12 (𝐹 Fn ℕ ↔ 𝐹:ℕ–onto→ran 𝐹)
120118, 119sylib 218 . . . . . . . . . . 11 (𝜑𝐹:ℕ–onto→ran 𝐹)
121 foco 6848 . . . . . . . . . . 11 (((1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
122117, 120, 121sylancr 586 . . . . . . . . . 10 (𝜑 → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
123 fodomnum 10126 . . . . . . . . . 10 (ℕ ∈ dom card → (((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹) → (1st “ ran 𝐹) ≼ ℕ))
124108, 122, 123mpsyl 68 . . . . . . . . 9 (𝜑 → (1st “ ran 𝐹) ≼ ℕ)
125 domentr 9073 . . . . . . . . 9 (((1st “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (1st “ ran 𝐹) ≼ ω)
126124, 105, 125sylancl 585 . . . . . . . 8 (𝜑 → (1st “ ran 𝐹) ≼ ω)
127 fofun 6835 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
12878, 127ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
129 fof 6834 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd :V⟶V)
13078, 129ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟶V
131130fdmi 6758 . . . . . . . . . . . . 13 dom 2nd = V
132111, 131sseqtrri 4046 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 2nd
133 fores 6844 . . . . . . . . . . . 12 ((Fun 2nd ∧ ran 𝐹 ⊆ dom 2nd ) → (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹))
134128, 132, 133mp2an 691 . . . . . . . . . . 11 (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹)
135 foco 6848 . . . . . . . . . . 11 (((2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
136134, 120, 135sylancr 586 . . . . . . . . . 10 (𝜑 → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
137 fodomnum 10126 . . . . . . . . . 10 (ℕ ∈ dom card → (((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹) → (2nd “ ran 𝐹) ≼ ℕ))
138108, 136, 137mpsyl 68 . . . . . . . . 9 (𝜑 → (2nd “ ran 𝐹) ≼ ℕ)
139 domentr 9073 . . . . . . . . 9 (((2nd “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (2nd “ ran 𝐹) ≼ ω)
140138, 105, 139sylancl 585 . . . . . . . 8 (𝜑 → (2nd “ ran 𝐹) ≼ ω)
141 unctb 10273 . . . . . . . 8 (((1st “ ran 𝐹) ≼ ω ∧ (2nd “ ran 𝐹) ≼ ω) → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
142126, 140, 141syl2anc 583 . . . . . . 7 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
143 ctex 9023 . . . . . . 7 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
144142, 143syl 17 . . . . . 6 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
145 ssid 4031 . . . . . . . 8 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
146145, 99sseqtrid 4061 . . . . . . 7 (𝜑 ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
147 ssundif 4511 . . . . . . 7 ( ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))) ↔ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
148146, 147sylib 218 . . . . . 6 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
149 ssdomg 9060 . . . . . 6 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V → (( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
150144, 148, 149sylc 65 . . . . 5 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
151 domtr 9067 . . . . 5 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∧ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
152150, 142, 151syl2anc 583 . . . 4 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
153 domentr 9073 . . . 4 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω ∧ ω ≈ ℕ) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
154152, 106, 153sylancl 585 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
155 ovolctb2 25546 . . 3 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ) → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
156103, 154, 155syl2anc 583 . 2 (𝜑 → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
157100, 156jca 511 1 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648  {cpr 4650  cop 4654   cuni 4931   ciun 5015   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  2nd c2nd 8029  cen 9000  cdom 9001  cardccrd 10004  cr 11183  0cc0 11184  *cxr 11323  cle 11325  cn 12293  (,)cioo 13407  [,]cicc 13410  vol*covol 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518
This theorem is referenced by:  uniioombllem3  25639  uniioombllem4  25640  uniioombllem5  25641  uniiccmbl  25644
  Copyright terms: Public domain W3C validator