MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oarec Structured version   Visualization version   GIF version

Theorem oarec 8045
Description: Recursive definition of ordinal addition. Exercise 25 of [Enderton] p. 240. (Contributed by NM, 26-Dec-2004.) (Revised by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
oarec ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oarec
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7031 . . . 4 (𝑧 = ∅ → (𝐴 +o 𝑧) = (𝐴 +o ∅))
2 mpteq1 5055 . . . . . . . 8 (𝑧 = ∅ → (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ ∅ ↦ (𝐴 +o 𝑥)))
3 mpt0 6365 . . . . . . . 8 (𝑥 ∈ ∅ ↦ (𝐴 +o 𝑥)) = ∅
42, 3syl6eq 2849 . . . . . . 7 (𝑧 = ∅ → (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = ∅)
54rneqd 5697 . . . . . 6 (𝑧 = ∅ → ran (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = ran ∅)
6 rn0 5722 . . . . . 6 ran ∅ = ∅
75, 6syl6eq 2849 . . . . 5 (𝑧 = ∅ → ran (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = ∅)
87uneq2d 4066 . . . 4 (𝑧 = ∅ → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ ∅))
91, 8eqeq12d 2812 . . 3 (𝑧 = ∅ → ((𝐴 +o 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) ↔ (𝐴 +o ∅) = (𝐴 ∪ ∅)))
10 oveq2 7031 . . . 4 (𝑧 = 𝑤 → (𝐴 +o 𝑧) = (𝐴 +o 𝑤))
11 mpteq1 5055 . . . . . 6 (𝑧 = 𝑤 → (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = (𝑥𝑤 ↦ (𝐴 +o 𝑥)))
1211rneqd 5697 . . . . 5 (𝑧 = 𝑤 → ran (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))
1312uneq2d 4066 . . . 4 (𝑧 = 𝑤 → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))))
1410, 13eqeq12d 2812 . . 3 (𝑧 = 𝑤 → ((𝐴 +o 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) ↔ (𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))))
15 oveq2 7031 . . . 4 (𝑧 = suc 𝑤 → (𝐴 +o 𝑧) = (𝐴 +o suc 𝑤))
16 mpteq1 5055 . . . . . 6 (𝑧 = suc 𝑤 → (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)))
1716rneqd 5697 . . . . 5 (𝑧 = suc 𝑤 → ran (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)))
1817uneq2d 4066 . . . 4 (𝑧 = suc 𝑤 → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥))))
1915, 18eqeq12d 2812 . . 3 (𝑧 = suc 𝑤 → ((𝐴 +o 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) ↔ (𝐴 +o suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)))))
20 oveq2 7031 . . . 4 (𝑧 = 𝐵 → (𝐴 +o 𝑧) = (𝐴 +o 𝐵))
21 mpteq1 5055 . . . . . 6 (𝑧 = 𝐵 → (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
2221rneqd 5697 . . . . 5 (𝑧 = 𝐵 → ran (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
2322uneq2d 4066 . . . 4 (𝑧 = 𝐵 → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
2420, 23eqeq12d 2812 . . 3 (𝑧 = 𝐵 → ((𝐴 +o 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))) ↔ (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))))
25 oa0 7999 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
26 un0 4270 . . . 4 (𝐴 ∪ ∅) = 𝐴
2725, 26syl6eqr 2851 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 ∪ ∅))
28 uneq1 4059 . . . . . 6 ((𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) → ((𝐴 +o 𝑤) ∪ {(𝐴 +o 𝑤)}) = ((𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) ∪ {(𝐴 +o 𝑤)}))
29 unass 4069 . . . . . . 7 ((𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) ∪ {(𝐴 +o 𝑤)}) = (𝐴 ∪ (ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∪ {(𝐴 +o 𝑤)}))
30 rexun 4093 . . . . . . . . . . 11 (∃𝑥 ∈ (𝑤 ∪ {𝑤})𝑦 = (𝐴 +o 𝑥) ↔ (∃𝑥𝑤 𝑦 = (𝐴 +o 𝑥) ∨ ∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +o 𝑥)))
31 df-suc 6079 . . . . . . . . . . . 12 suc 𝑤 = (𝑤 ∪ {𝑤})
3231rexeqi 3376 . . . . . . . . . . 11 (∃𝑥 ∈ suc 𝑤𝑦 = (𝐴 +o 𝑥) ↔ ∃𝑥 ∈ (𝑤 ∪ {𝑤})𝑦 = (𝐴 +o 𝑥))
33 eqid 2797 . . . . . . . . . . . . . 14 (𝑥𝑤 ↦ (𝐴 +o 𝑥)) = (𝑥𝑤 ↦ (𝐴 +o 𝑥))
3433elrnmpt 5717 . . . . . . . . . . . . 13 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑥𝑤 𝑦 = (𝐴 +o 𝑥)))
3534elv 3445 . . . . . . . . . . . 12 (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑥𝑤 𝑦 = (𝐴 +o 𝑥))
36 velsn 4494 . . . . . . . . . . . . 13 (𝑦 ∈ {(𝐴 +o 𝑤)} ↔ 𝑦 = (𝐴 +o 𝑤))
37 vex 3443 . . . . . . . . . . . . . 14 𝑤 ∈ V
38 oveq2 7031 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤))
3938eqeq2d 2807 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑦 = (𝐴 +o 𝑥) ↔ 𝑦 = (𝐴 +o 𝑤)))
4037, 39rexsn 4533 . . . . . . . . . . . . 13 (∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +o 𝑥) ↔ 𝑦 = (𝐴 +o 𝑤))
4136, 40bitr4i 279 . . . . . . . . . . . 12 (𝑦 ∈ {(𝐴 +o 𝑤)} ↔ ∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +o 𝑥))
4235, 41orbi12i 909 . . . . . . . . . . 11 ((𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∨ 𝑦 ∈ {(𝐴 +o 𝑤)}) ↔ (∃𝑥𝑤 𝑦 = (𝐴 +o 𝑥) ∨ ∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +o 𝑥)))
4330, 32, 423bitr4i 304 . . . . . . . . . 10 (∃𝑥 ∈ suc 𝑤𝑦 = (𝐴 +o 𝑥) ↔ (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∨ 𝑦 ∈ {(𝐴 +o 𝑤)}))
44 eqid 2797 . . . . . . . . . . 11 (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥))
45 ovex 7055 . . . . . . . . . . 11 (𝐴 +o 𝑥) ∈ V
4644, 45elrnmpti 5721 . . . . . . . . . 10 (𝑦 ∈ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑥 ∈ suc 𝑤𝑦 = (𝐴 +o 𝑥))
47 elun 4052 . . . . . . . . . 10 (𝑦 ∈ (ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∪ {(𝐴 +o 𝑤)}) ↔ (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∨ 𝑦 ∈ {(𝐴 +o 𝑤)}))
4843, 46, 473bitr4i 304 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)) ↔ 𝑦 ∈ (ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∪ {(𝐴 +o 𝑤)}))
4948eqriv 2794 . . . . . . . 8 ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)) = (ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∪ {(𝐴 +o 𝑤)})
5049uneq2i 4063 . . . . . . 7 (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ (ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ∪ {(𝐴 +o 𝑤)}))
5129, 50eqtr4i 2824 . . . . . 6 ((𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) ∪ {(𝐴 +o 𝑤)}) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)))
5228, 51syl6eq 2849 . . . . 5 ((𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) → ((𝐴 +o 𝑤) ∪ {(𝐴 +o 𝑤)}) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥))))
53 oasuc 8007 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → (𝐴 +o suc 𝑤) = suc (𝐴 +o 𝑤))
54 df-suc 6079 . . . . . . 7 suc (𝐴 +o 𝑤) = ((𝐴 +o 𝑤) ∪ {(𝐴 +o 𝑤)})
5553, 54syl6eq 2849 . . . . . 6 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → (𝐴 +o suc 𝑤) = ((𝐴 +o 𝑤) ∪ {(𝐴 +o 𝑤)}))
5655eqeq1d 2799 . . . . 5 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → ((𝐴 +o suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥))) ↔ ((𝐴 +o 𝑤) ∪ {(𝐴 +o 𝑤)}) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)))))
5752, 56syl5ibr 247 . . . 4 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → ((𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) → (𝐴 +o suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥)))))
5857expcom 414 . . 3 (𝑤 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) → (𝐴 +o suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +o 𝑥))))))
59 vex 3443 . . . . . . . 8 𝑧 ∈ V
60 oalim 8015 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝑧 ∈ V ∧ Lim 𝑧)) → (𝐴 +o 𝑧) = 𝑤𝑧 (𝐴 +o 𝑤))
6159, 60mpanr1 699 . . . . . . 7 ((𝐴 ∈ On ∧ Lim 𝑧) → (𝐴 +o 𝑧) = 𝑤𝑧 (𝐴 +o 𝑤))
6261ancoms 459 . . . . . 6 ((Lim 𝑧𝐴 ∈ On) → (𝐴 +o 𝑧) = 𝑤𝑧 (𝐴 +o 𝑤))
6362adantr 481 . . . . 5 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))) → (𝐴 +o 𝑧) = 𝑤𝑧 (𝐴 +o 𝑤))
64 iuneq2 4849 . . . . . 6 (∀𝑤𝑧 (𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) → 𝑤𝑧 (𝐴 +o 𝑤) = 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))))
6564adantl 482 . . . . 5 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))) → 𝑤𝑧 (𝐴 +o 𝑤) = 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))))
66 iunun 4920 . . . . . . 7 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) = ( 𝑤𝑧 𝐴 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))
67 0ellim 6135 . . . . . . . . 9 (Lim 𝑧 → ∅ ∈ 𝑧)
68 ne0i 4226 . . . . . . . . 9 (∅ ∈ 𝑧𝑧 ≠ ∅)
69 iunconst 4840 . . . . . . . . 9 (𝑧 ≠ ∅ → 𝑤𝑧 𝐴 = 𝐴)
7067, 68, 693syl 18 . . . . . . . 8 (Lim 𝑧 𝑤𝑧 𝐴 = 𝐴)
71 limuni 6133 . . . . . . . . . . . 12 (Lim 𝑧𝑧 = 𝑧)
7271rexeqdv 3378 . . . . . . . . . . 11 (Lim 𝑧 → (∃𝑥𝑧 𝑦 = (𝐴 +o 𝑥) ↔ ∃𝑥 𝑧𝑦 = (𝐴 +o 𝑥)))
73 df-rex 3113 . . . . . . . . . . . . . 14 (∃𝑥𝑤 𝑦 = (𝐴 +o 𝑥) ↔ ∃𝑥(𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
7435, 73bitri 276 . . . . . . . . . . . . 13 (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑥(𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
7574rexbii 3213 . . . . . . . . . . . 12 (∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑤𝑧𝑥(𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
76 eluni2 4755 . . . . . . . . . . . . . . . 16 (𝑥 𝑧 ↔ ∃𝑤𝑧 𝑥𝑤)
7776anbi1i 623 . . . . . . . . . . . . . . 15 ((𝑥 𝑧𝑦 = (𝐴 +o 𝑥)) ↔ (∃𝑤𝑧 𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
78 r19.41v 3310 . . . . . . . . . . . . . . 15 (∃𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +o 𝑥)) ↔ (∃𝑤𝑧 𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
7977, 78bitr4i 279 . . . . . . . . . . . . . 14 ((𝑥 𝑧𝑦 = (𝐴 +o 𝑥)) ↔ ∃𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
8079exbii 1833 . . . . . . . . . . . . 13 (∃𝑥(𝑥 𝑧𝑦 = (𝐴 +o 𝑥)) ↔ ∃𝑥𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
81 df-rex 3113 . . . . . . . . . . . . 13 (∃𝑥 𝑧𝑦 = (𝐴 +o 𝑥) ↔ ∃𝑥(𝑥 𝑧𝑦 = (𝐴 +o 𝑥)))
82 rexcom4 3215 . . . . . . . . . . . . 13 (∃𝑤𝑧𝑥(𝑥𝑤𝑦 = (𝐴 +o 𝑥)) ↔ ∃𝑥𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
8380, 81, 823bitr4i 304 . . . . . . . . . . . 12 (∃𝑥 𝑧𝑦 = (𝐴 +o 𝑥) ↔ ∃𝑤𝑧𝑥(𝑥𝑤𝑦 = (𝐴 +o 𝑥)))
8475, 83bitr4i 279 . . . . . . . . . . 11 (∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑥 𝑧𝑦 = (𝐴 +o 𝑥))
8572, 84syl6rbbr 291 . . . . . . . . . 10 (Lim 𝑧 → (∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑥𝑧 𝑦 = (𝐴 +o 𝑥)))
86 eliun 4835 . . . . . . . . . 10 (𝑦 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))
87 eqid 2797 . . . . . . . . . . 11 (𝑥𝑧 ↦ (𝐴 +o 𝑥)) = (𝑥𝑧 ↦ (𝐴 +o 𝑥))
8887, 45elrnmpti 5721 . . . . . . . . . 10 (𝑦 ∈ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥)) ↔ ∃𝑥𝑧 𝑦 = (𝐴 +o 𝑥))
8985, 86, 883bitr4g 315 . . . . . . . . 9 (Lim 𝑧 → (𝑦 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) ↔ 𝑦 ∈ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))))
9089eqrdv 2795 . . . . . . . 8 (Lim 𝑧 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)) = ran (𝑥𝑧 ↦ (𝐴 +o 𝑥)))
9170, 90uneq12d 4067 . . . . . . 7 (Lim 𝑧 → ( 𝑤𝑧 𝐴 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))))
9266, 91syl5eq 2845 . . . . . 6 (Lim 𝑧 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))))
9392ad2antrr 722 . . . . 5 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))) → 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))))
9463, 65, 933eqtrd 2837 . . . 4 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥)))) → (𝐴 +o 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))))
9594exp31 420 . . 3 (Lim 𝑧 → (𝐴 ∈ On → (∀𝑤𝑧 (𝐴 +o 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +o 𝑥))) → (𝐴 +o 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +o 𝑥))))))
969, 14, 19, 24, 27, 58, 95tfinds3 7442 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))))
9796impcom 408 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1525  wex 1765  wcel 2083  wne 2986  wral 3107  wrex 3108  Vcvv 3440  cun 3863  c0 4217  {csn 4478   cuni 4751   ciun 4831  cmpt 5047  ran crn 5451  Oncon0 6073  Lim wlim 6074  suc csuc 6075  (class class class)co 7023   +o coa 7957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-oadd 7964
This theorem is referenced by:  oacomf1o  8048  onadju  9472
  Copyright terms: Public domain W3C validator