Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpeq2d Structured version   Visualization version   GIF version

Theorem ixpeq2d 42505
Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ixpeq2d.1 𝑥𝜑
ixpeq2d.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2d (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)

Proof of Theorem ixpeq2d
StepHypRef Expression
1 ixpeq2d.1 . . 3 𝑥𝜑
2 ixpeq2d.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
41, 3ralrimi 3139 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
5 ixpeq2 8657 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-ixp 8644
This theorem is referenced by:  hoicvrrex  43984  ovnlecvr  43986  ovnhoilem1  44029  hoi2toco  44035  ovnlecvr2  44038  opnvonmbllem1  44060
  Copyright terms: Public domain W3C validator