Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpeq2d Structured version   Visualization version   GIF version

Theorem ixpeq2d 45073
Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ixpeq2d.1 𝑥𝜑
ixpeq2d.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2d (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)

Proof of Theorem ixpeq2d
StepHypRef Expression
1 ixpeq2d.1 . . 3 𝑥𝜑
2 ixpeq2d.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
41, 3ralrimi 3257 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
5 ixpeq2 8951 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3061  Xcixp 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-ss 3968  df-ixp 8938
This theorem is referenced by:  hoicvrrex  46571  ovnlecvr  46573  ovnhoilem1  46616  hoi2toco  46622  ovnlecvr2  46625  opnvonmbllem1  46647
  Copyright terms: Public domain W3C validator