Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicvrrex Structured version   Visualization version   GIF version

Theorem hoicvrrex 43984
Description: Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoicvrrex.fi (𝜑𝑋 ∈ Fin)
hoicvrrex.y (𝜑𝑌 ⊆ (ℝ ↑m 𝑋))
Assertion
Ref Expression
hoicvrrex (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝑖,𝑋,𝑗,𝑘   𝑖,𝑌   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝑌(𝑗,𝑘)

Proof of Theorem hoicvrrex
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nnre 11910 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
21renegcld 11332 . . . . . . . 8 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ)
3 opelxpi 5617 . . . . . . . 8 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
42, 1, 3syl2anc 583 . . . . . . 7 (𝑗 ∈ ℕ → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
54ad2antlr 723 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
6 eqid 2738 . . . . . 6 (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
75, 6fmptd 6970 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ))
8 reex 10893 . . . . . . . . 9 ℝ ∈ V
98, 8xpex 7581 . . . . . . . 8 (ℝ × ℝ) ∈ V
109a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ∈ V)
11 hoicvrrex.fi . . . . . . 7 (𝜑𝑋 ∈ Fin)
12 elmapg 8586 . . . . . . 7 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1310, 11, 12syl2anc 583 . . . . . 6 (𝜑 → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1413adantr 480 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
157, 14mpbird 256 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
16 eqid 2738 . . . 4 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
1715, 16fmptd 6970 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
18 ovex 7288 . . . 4 ((ℝ × ℝ) ↑m 𝑋) ∈ V
19 nnex 11909 . . . 4 ℕ ∈ V
2018, 19elmap 8617 . . 3 ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
2117, 20sylibr 233 . 2 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
22 hoicvrrex.y . . . 4 (𝜑𝑌 ⊆ (ℝ ↑m 𝑋))
23 eqid 2738 . . . . . 6 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2423, 11hoicvr 43976 . . . . 5 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
25 eqidd 2739 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗⟩)
2625cbvmptv 5183 . . . . . . . . . . . 12 (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
2726mpteq2i 5175 . . . . . . . . . . 11 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2827a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)))
2928fveq1d 6758 . . . . . . . . 9 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
3029coeq2d 5760 . . . . . . . 8 (𝜑 → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
3130fveq1d 6758 . . . . . . 7 (𝜑 → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3231ixpeq2dv 8659 . . . . . 6 (𝜑X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3332iuneq2d 4950 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3424, 33sseqtrd 3957 . . . 4 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3522, 34sstrd 3927 . . 3 (𝜑𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
36 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3715elexd 3442 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
3816fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
3936, 37, 38syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
4039, 5fmpt3d 6972 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
4140adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
42 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4341, 42fvovco 42621 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))))
4439fveq1d 6758 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
4544adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
46 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → 𝑘𝑋)
47 opex 5373 . . . . . . . . . . . . . . . . . 18 ⟨-𝑗, 𝑗⟩ ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ V)
496fvmpt2 6868 . . . . . . . . . . . . . . . . 17 ((𝑘𝑋 ∧ ⟨-𝑗, 𝑗⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5046, 48, 49syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5150adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5245, 51eqtrd 2778 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5352fveq2d 6760 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (1st ‘⟨-𝑗, 𝑗⟩))
54 negex 11149 . . . . . . . . . . . . . . 15 -𝑗 ∈ V
55 vex 3426 . . . . . . . . . . . . . . 15 𝑗 ∈ V
5654, 55op1st 7812 . . . . . . . . . . . . . 14 (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗
5756a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗)
5853, 57eqtrd 2778 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = -𝑗)
5952fveq2d 6760 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (2nd ‘⟨-𝑗, 𝑗⟩))
6054, 55op2nd 7813 . . . . . . . . . . . . . 14 (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗
6160a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗)
6259, 61eqtrd 2778 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = 𝑗)
6358, 62oveq12d 7273 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))) = (-𝑗[,)𝑗))
6443, 63eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (-𝑗[,)𝑗))
6564fveq2d 6760 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (vol‘(-𝑗[,)𝑗)))
66 volico 43414 . . . . . . . . . . . 12 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
672, 1, 66syl2anc 583 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
68 nnrp 12670 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
69 neglt 42712 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ+ → -𝑗 < 𝑗)
7068, 69syl 17 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → -𝑗 < 𝑗)
7170iftrued 4464 . . . . . . . . . . 11 (𝑗 ∈ ℕ → if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0) = (𝑗 − -𝑗))
721recnd 10934 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7372, 72subnegd 11269 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (𝑗 + 𝑗))
74722timesd 12146 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (2 · 𝑗) = (𝑗 + 𝑗))
7573, 74eqtr4d 2781 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (2 · 𝑗))
7667, 71, 753eqtrd 2782 . . . . . . . . . 10 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7776ad2antlr 723 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7865, 77eqtrd 2778 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (2 · 𝑗))
7978prodeq2dv 15561 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (2 · 𝑗))
8011adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
81 2cnd 11981 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
8272adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
8381, 82mulcld 10926 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
84 fprodconst 15616 . . . . . . . 8 ((𝑋 ∈ Fin ∧ (2 · 𝑗) ∈ ℂ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8580, 83, 84syl2anc 583 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8679, 85eqtrd 2778 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ((2 · 𝑗)↑(♯‘𝑋)))
8786mpteq2dva 5170 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))))
8887fveq2d 6760 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
8919a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9068ssriv 3921 . . . . . . . . . 10 ℕ ⊆ ℝ+
91 ioorp 13086 . . . . . . . . . . 11 (0(,)+∞) = ℝ+
9291eqcomi 2747 . . . . . . . . . 10 + = (0(,)+∞)
9390, 92sseqtri 3953 . . . . . . . . 9 ℕ ⊆ (0(,)+∞)
94 ioossicc 13094 . . . . . . . . 9 (0(,)+∞) ⊆ (0[,]+∞)
9593, 94sstri 3926 . . . . . . . 8 ℕ ⊆ (0[,]+∞)
96 2nn 11976 . . . . . . . . . . 11 2 ∈ ℕ
9796a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℕ)
9897, 36nnmulcld 11956 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ)
99 hashcl 13999 . . . . . . . . . . 11 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
10011, 99syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑋) ∈ ℕ0)
101100adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (♯‘𝑋) ∈ ℕ0)
102 nnexpcl 13723 . . . . . . . . 9 (((2 · 𝑗) ∈ ℕ ∧ (♯‘𝑋) ∈ ℕ0) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10398, 101, 102syl2anc 583 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10495, 103sselid 3915 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ (0[,]+∞))
105 eqid 2738 . . . . . . 7 (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))
106104, 105fmptd 6970 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))):ℕ⟶(0[,]+∞))
10789, 106sge0xrcl 43813 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) ∈ ℝ*)
108 pnfxr 10960 . . . . . . 7 +∞ ∈ ℝ*
109108a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
110 1nn 11914 . . . . . . . . . 10 1 ∈ ℕ
11195, 110sselii 3914 . . . . . . . . 9 1 ∈ (0[,]+∞)
112111a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
113 eqid 2738 . . . . . . . 8 (𝑗 ∈ ℕ ↦ 1) = (𝑗 ∈ ℕ ↦ 1)
114112, 113fmptd 6970 . . . . . . 7 (𝜑 → (𝑗 ∈ ℕ ↦ 1):ℕ⟶(0[,]+∞))
11589, 114sge0xrcl 43813 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ∈ ℝ*)
116 nnnfi 13614 . . . . . . . . . 10 ¬ ℕ ∈ Fin
117116a1i 11 . . . . . . . . 9 (𝜑 → ¬ ℕ ∈ Fin)
118 1rp 12663 . . . . . . . . . 10 1 ∈ ℝ+
119118a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ+)
12089, 117, 119sge0rpcpnf 43849 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) = +∞)
121120eqcomd 2744 . . . . . . 7 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
122109, 121xreqled 42759 . . . . . 6 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
123 nfv 1918 . . . . . . 7 𝑗𝜑
124114fvmptelrn 6969 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
125103nnge1d 11951 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ≤ ((2 · 𝑗)↑(♯‘𝑋)))
126123, 89, 124, 104, 125sge0lempt 43838 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
127109, 115, 107, 122, 126xrletrd 12825 . . . . 5 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
128107, 127xrgepnfd 42760 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) = +∞)
129 eqidd 2739 . . . 4 (𝜑 → +∞ = +∞)
13088, 128, 1293eqtrrd 2783 . . 3 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
13135, 130jca 511 . 2 (𝜑 → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
132 nfcv 2906 . . . . . . 7 𝑗𝑖
133 nfmpt1 5178 . . . . . . 7 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
134132, 133nfeq 2919 . . . . . 6 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
135 nfcv 2906 . . . . . . . . 9 𝑘𝑖
136 nfcv 2906 . . . . . . . . . 10 𝑘
137 nfmpt1 5178 . . . . . . . . . 10 𝑘(𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
138136, 137nfmpt 5177 . . . . . . . . 9 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
139135, 138nfeq 2919 . . . . . . . 8 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
140 fveq1 6755 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
141140coeq2d 5760 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
142141fveq1d 6758 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
143142adantr 480 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
144139, 143ixpeq2d 42505 . . . . . . 7 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
145144adantr 480 . . . . . 6 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
146134, 145iuneq2df 42483 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
147146sseq2d 3949 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
148142fveq2d 6760 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
149148a1d 25 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
150139, 149ralrimi 3139 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
151150adantr 480 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
152151prodeq2d 15560 . . . . . . 7 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
153134, 152mpteq2da 5168 . . . . . 6 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
154153fveq2d 6760 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
155154eqeq2d 2749 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (+∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
156147, 155anbi12d 630 . . 3 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ((𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))))
157156rspcev 3552 . 2 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
15821, 131, 157syl2anc 583 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  ifcif 4456  cop 4564   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Xcixp 8643  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cmin 11135  -cneg 11136  cn 11903  2c2 11958  0cn0 12163  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  cexp 13710  chash 13972  cprod 15543  volcvol 24532  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791
This theorem is referenced by:  ovnpnfelsup  43987
  Copyright terms: Public domain W3C validator