Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicvrrex Structured version   Visualization version   GIF version

Theorem hoicvrrex 46554
Description: Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoicvrrex.fi (𝜑𝑋 ∈ Fin)
hoicvrrex.y (𝜑𝑌 ⊆ (ℝ ↑m 𝑋))
Assertion
Ref Expression
hoicvrrex (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝑖,𝑋,𝑗,𝑘   𝑖,𝑌   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝑌(𝑗,𝑘)

Proof of Theorem hoicvrrex
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nnre 12193 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
21renegcld 11605 . . . . . . . 8 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ)
3 opelxpi 5675 . . . . . . . 8 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
42, 1, 3syl2anc 584 . . . . . . 7 (𝑗 ∈ ℕ → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
54ad2antlr 727 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
6 eqid 2729 . . . . . 6 (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
75, 6fmptd 7086 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ))
8 reex 11159 . . . . . . . . 9 ℝ ∈ V
98, 8xpex 7729 . . . . . . . 8 (ℝ × ℝ) ∈ V
109a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ∈ V)
11 hoicvrrex.fi . . . . . . 7 (𝜑𝑋 ∈ Fin)
12 elmapg 8812 . . . . . . 7 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1310, 11, 12syl2anc 584 . . . . . 6 (𝜑 → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1413adantr 480 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
157, 14mpbird 257 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
16 eqid 2729 . . . 4 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
1715, 16fmptd 7086 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
18 ovex 7420 . . . 4 ((ℝ × ℝ) ↑m 𝑋) ∈ V
19 nnex 12192 . . . 4 ℕ ∈ V
2018, 19elmap 8844 . . 3 ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
2117, 20sylibr 234 . 2 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
22 hoicvrrex.y . . . 4 (𝜑𝑌 ⊆ (ℝ ↑m 𝑋))
23 eqid 2729 . . . . . 6 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2423, 11hoicvr 46546 . . . . 5 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
25 eqidd 2730 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗⟩)
2625cbvmptv 5211 . . . . . . . . . . . 12 (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
2726mpteq2i 5203 . . . . . . . . . . 11 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2827a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)))
2928fveq1d 6860 . . . . . . . . 9 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
3029coeq2d 5826 . . . . . . . 8 (𝜑 → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
3130fveq1d 6860 . . . . . . 7 (𝜑 → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3231ixpeq2dv 8886 . . . . . 6 (𝜑X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3332iuneq2d 4986 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3424, 33sseqtrd 3983 . . . 4 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3522, 34sstrd 3957 . . 3 (𝜑𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
36 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3715elexd 3471 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
3816fvmpt2 6979 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
4039, 5fmpt3d 7088 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
4140adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
42 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4341, 42fvovco 45187 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))))
4439fveq1d 6860 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
4544adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
46 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → 𝑘𝑋)
47 opex 5424 . . . . . . . . . . . . . . . . . 18 ⟨-𝑗, 𝑗⟩ ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ V)
496fvmpt2 6979 . . . . . . . . . . . . . . . . 17 ((𝑘𝑋 ∧ ⟨-𝑗, 𝑗⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5046, 48, 49syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5150adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5245, 51eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5352fveq2d 6862 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (1st ‘⟨-𝑗, 𝑗⟩))
54 negex 11419 . . . . . . . . . . . . . . 15 -𝑗 ∈ V
55 vex 3451 . . . . . . . . . . . . . . 15 𝑗 ∈ V
5654, 55op1st 7976 . . . . . . . . . . . . . 14 (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗
5756a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗)
5853, 57eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = -𝑗)
5952fveq2d 6862 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (2nd ‘⟨-𝑗, 𝑗⟩))
6054, 55op2nd 7977 . . . . . . . . . . . . . 14 (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗
6160a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗)
6259, 61eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = 𝑗)
6358, 62oveq12d 7405 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))) = (-𝑗[,)𝑗))
6443, 63eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (-𝑗[,)𝑗))
6564fveq2d 6862 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (vol‘(-𝑗[,)𝑗)))
66 volico 45981 . . . . . . . . . . . 12 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
672, 1, 66syl2anc 584 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
68 nnrp 12963 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
69 neglt 12971 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ+ → -𝑗 < 𝑗)
7068, 69syl 17 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → -𝑗 < 𝑗)
7170iftrued 4496 . . . . . . . . . . 11 (𝑗 ∈ ℕ → if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0) = (𝑗 − -𝑗))
721recnd 11202 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7372, 72subnegd 11540 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (𝑗 + 𝑗))
74722timesd 12425 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (2 · 𝑗) = (𝑗 + 𝑗))
7573, 74eqtr4d 2767 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (2 · 𝑗))
7667, 71, 753eqtrd 2768 . . . . . . . . . 10 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7776ad2antlr 727 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7865, 77eqtrd 2764 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (2 · 𝑗))
7978prodeq2dv 15888 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (2 · 𝑗))
8011adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
81 2cnd 12264 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
8272adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
8381, 82mulcld 11194 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
84 fprodconst 15944 . . . . . . . 8 ((𝑋 ∈ Fin ∧ (2 · 𝑗) ∈ ℂ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8580, 83, 84syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8679, 85eqtrd 2764 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ((2 · 𝑗)↑(♯‘𝑋)))
8786mpteq2dva 5200 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))))
8887fveq2d 6862 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
8919a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9068ssriv 3950 . . . . . . . . . 10 ℕ ⊆ ℝ+
91 ioorp 13386 . . . . . . . . . . 11 (0(,)+∞) = ℝ+
9291eqcomi 2738 . . . . . . . . . 10 + = (0(,)+∞)
9390, 92sseqtri 3995 . . . . . . . . 9 ℕ ⊆ (0(,)+∞)
94 ioossicc 13394 . . . . . . . . 9 (0(,)+∞) ⊆ (0[,]+∞)
9593, 94sstri 3956 . . . . . . . 8 ℕ ⊆ (0[,]+∞)
96 2nn 12259 . . . . . . . . . . 11 2 ∈ ℕ
9796a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℕ)
9897, 36nnmulcld 12239 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ)
99 hashcl 14321 . . . . . . . . . . 11 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
10011, 99syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑋) ∈ ℕ0)
101100adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (♯‘𝑋) ∈ ℕ0)
102 nnexpcl 14039 . . . . . . . . 9 (((2 · 𝑗) ∈ ℕ ∧ (♯‘𝑋) ∈ ℕ0) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10398, 101, 102syl2anc 584 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10495, 103sselid 3944 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ (0[,]+∞))
105 eqid 2729 . . . . . . 7 (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))
106104, 105fmptd 7086 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))):ℕ⟶(0[,]+∞))
10789, 106sge0xrcl 46383 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) ∈ ℝ*)
108 pnfxr 11228 . . . . . . 7 +∞ ∈ ℝ*
109108a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
110 1nn 12197 . . . . . . . . . 10 1 ∈ ℕ
11195, 110sselii 3943 . . . . . . . . 9 1 ∈ (0[,]+∞)
112111a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
113 eqid 2729 . . . . . . . 8 (𝑗 ∈ ℕ ↦ 1) = (𝑗 ∈ ℕ ↦ 1)
114112, 113fmptd 7086 . . . . . . 7 (𝜑 → (𝑗 ∈ ℕ ↦ 1):ℕ⟶(0[,]+∞))
11589, 114sge0xrcl 46383 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ∈ ℝ*)
116 nnnfi 13931 . . . . . . . . . 10 ¬ ℕ ∈ Fin
117116a1i 11 . . . . . . . . 9 (𝜑 → ¬ ℕ ∈ Fin)
118 1rp 12955 . . . . . . . . . 10 1 ∈ ℝ+
119118a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ+)
12089, 117, 119sge0rpcpnf 46419 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) = +∞)
121120eqcomd 2735 . . . . . . 7 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
122109, 121xreqled 45326 . . . . . 6 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
123 nfv 1914 . . . . . . 7 𝑗𝜑
124114fvmptelcdm 7085 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
125103nnge1d 12234 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ≤ ((2 · 𝑗)↑(♯‘𝑋)))
126123, 89, 124, 104, 125sge0lempt 46408 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
127109, 115, 107, 122, 126xrletrd 13122 . . . . 5 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
128107, 127xrgepnfd 45327 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) = +∞)
129 eqidd 2730 . . . 4 (𝜑 → +∞ = +∞)
13088, 128, 1293eqtrrd 2769 . . 3 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
13135, 130jca 511 . 2 (𝜑 → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
132 nfcv 2891 . . . . . . 7 𝑗𝑖
133 nfmpt1 5206 . . . . . . 7 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
134132, 133nfeq 2905 . . . . . 6 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
135 nfcv 2891 . . . . . . . . 9 𝑘𝑖
136 nfcv 2891 . . . . . . . . . 10 𝑘
137 nfmpt1 5206 . . . . . . . . . 10 𝑘(𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
138136, 137nfmpt 5205 . . . . . . . . 9 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
139135, 138nfeq 2905 . . . . . . . 8 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
140 fveq1 6857 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
141140coeq2d 5826 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
142141fveq1d 6860 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
143142adantr 480 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
144139, 143ixpeq2d 45062 . . . . . . 7 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
145144adantr 480 . . . . . 6 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
146134, 145iuneq2df 45041 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
147146sseq2d 3979 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
148142fveq2d 6862 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
149148a1d 25 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
150139, 149ralrimi 3235 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
151150adantr 480 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
152151prodeq2d 15887 . . . . . . 7 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
153134, 152mpteq2da 5199 . . . . . 6 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
154153fveq2d 6862 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
155154eqeq2d 2740 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (+∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
156147, 155anbi12d 632 . . 3 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ((𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))))
157156rspcev 3588 . 2 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
15821, 131, 157syl2anc 584 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  ifcif 4488  cop 4595   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cmin 11405  -cneg 11406  cn 12186  2c2 12241  0cn0 12442  +crp 12951  (,)cioo 13306  [,)cico 13308  [,]cicc 13309  cexp 14026  chash 14295  cprod 15869  volcvol 25364  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-sumge0 46361
This theorem is referenced by:  ovnpnfelsup  46557
  Copyright terms: Public domain W3C validator