Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicvrrex Structured version   Visualization version   GIF version

Theorem hoicvrrex 42270
Description: Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoicvrrex.fi (𝜑𝑋 ∈ Fin)
hoicvrrex.y (𝜑𝑌 ⊆ (ℝ ↑𝑚 𝑋))
Assertion
Ref Expression
hoicvrrex (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝑖,𝑋,𝑗,𝑘   𝑖,𝑌   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝑌(𝑗,𝑘)

Proof of Theorem hoicvrrex
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nnre 11449 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
21renegcld 10870 . . . . . . . 8 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ)
3 opelxpi 5445 . . . . . . . 8 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
42, 1, 3syl2anc 576 . . . . . . 7 (𝑗 ∈ ℕ → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
54ad2antlr 714 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
6 eqid 2778 . . . . . 6 (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
75, 6fmptd 6703 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ))
8 reex 10428 . . . . . . . . 9 ℝ ∈ V
98, 8xpex 7295 . . . . . . . 8 (ℝ × ℝ) ∈ V
109a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ∈ V)
11 hoicvrrex.fi . . . . . . 7 (𝜑𝑋 ∈ Fin)
12 elmapg 8221 . . . . . . 7 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1310, 11, 12syl2anc 576 . . . . . 6 (𝜑 → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1413adantr 473 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
157, 14mpbird 249 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
16 eqid 2778 . . . 4 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
1715, 16fmptd 6703 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
18 ovex 7010 . . . 4 ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V
19 nnex 11448 . . . 4 ℕ ∈ V
2018, 19elmap 8237 . . 3 ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
2117, 20sylibr 226 . 2 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
22 hoicvrrex.y . . . 4 (𝜑𝑌 ⊆ (ℝ ↑𝑚 𝑋))
23 eqid 2778 . . . . . 6 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2423, 11hoicvr 42262 . . . . 5 (𝜑 → (ℝ ↑𝑚 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
25 eqidd 2779 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗⟩)
2625cbvmptv 5029 . . . . . . . . . . . 12 (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
2726mpteq2i 5020 . . . . . . . . . . 11 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2827a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)))
2928fveq1d 6503 . . . . . . . . 9 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
3029coeq2d 5584 . . . . . . . 8 (𝜑 → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
3130fveq1d 6503 . . . . . . 7 (𝜑 → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3231ixpeq2dv 8277 . . . . . 6 (𝜑X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3332iuneq2d 4821 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3424, 33sseqtrd 3899 . . . 4 (𝜑 → (ℝ ↑𝑚 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3522, 34sstrd 3870 . . 3 (𝜑𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
36 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3715elexd 3435 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
3816fvmpt2 6607 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
3936, 37, 38syl2anc 576 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
4039, 5fmpt3d 6705 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
4140adantr 473 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
42 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4341, 42fvovco 40880 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))))
4439fveq1d 6503 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
4544adantr 473 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
46 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → 𝑘𝑋)
47 opex 5214 . . . . . . . . . . . . . . . . . 18 ⟨-𝑗, 𝑗⟩ ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ V)
496fvmpt2 6607 . . . . . . . . . . . . . . . . 17 ((𝑘𝑋 ∧ ⟨-𝑗, 𝑗⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5046, 48, 49syl2anc 576 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5150adantlr 702 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5245, 51eqtrd 2814 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5352fveq2d 6505 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (1st ‘⟨-𝑗, 𝑗⟩))
54 negex 10686 . . . . . . . . . . . . . . 15 -𝑗 ∈ V
55 vex 3418 . . . . . . . . . . . . . . 15 𝑗 ∈ V
5654, 55op1st 7511 . . . . . . . . . . . . . 14 (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗
5756a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗)
5853, 57eqtrd 2814 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = -𝑗)
5952fveq2d 6505 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (2nd ‘⟨-𝑗, 𝑗⟩))
6054, 55op2nd 7512 . . . . . . . . . . . . . 14 (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗
6160a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗)
6259, 61eqtrd 2814 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = 𝑗)
6358, 62oveq12d 6996 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))) = (-𝑗[,)𝑗))
6443, 63eqtrd 2814 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (-𝑗[,)𝑗))
6564fveq2d 6505 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (vol‘(-𝑗[,)𝑗)))
66 volico 41700 . . . . . . . . . . . 12 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
672, 1, 66syl2anc 576 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
68 nnrp 12220 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
69 neglt 40980 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ+ → -𝑗 < 𝑗)
7068, 69syl 17 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → -𝑗 < 𝑗)
7170iftrued 4359 . . . . . . . . . . 11 (𝑗 ∈ ℕ → if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0) = (𝑗 − -𝑗))
721recnd 10470 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7372, 72subnegd 10807 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (𝑗 + 𝑗))
74722timesd 11693 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (2 · 𝑗) = (𝑗 + 𝑗))
7573, 74eqtr4d 2817 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (2 · 𝑗))
7667, 71, 753eqtrd 2818 . . . . . . . . . 10 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7776ad2antlr 714 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7865, 77eqtrd 2814 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (2 · 𝑗))
7978prodeq2dv 15140 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (2 · 𝑗))
8011adantr 473 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
81 2cnd 11521 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
8272adantl 474 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
8381, 82mulcld 10462 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
84 fprodconst 15195 . . . . . . . 8 ((𝑋 ∈ Fin ∧ (2 · 𝑗) ∈ ℂ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8580, 83, 84syl2anc 576 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8679, 85eqtrd 2814 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ((2 · 𝑗)↑(♯‘𝑋)))
8786mpteq2dva 5023 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))))
8887fveq2d 6505 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
8919a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9068ssriv 3864 . . . . . . . . . 10 ℕ ⊆ ℝ+
91 ioorp 12633 . . . . . . . . . . 11 (0(,)+∞) = ℝ+
9291eqcomi 2787 . . . . . . . . . 10 + = (0(,)+∞)
9390, 92sseqtri 3895 . . . . . . . . 9 ℕ ⊆ (0(,)+∞)
94 ioossicc 12641 . . . . . . . . 9 (0(,)+∞) ⊆ (0[,]+∞)
9593, 94sstri 3869 . . . . . . . 8 ℕ ⊆ (0[,]+∞)
96 2nn 11516 . . . . . . . . . . 11 2 ∈ ℕ
9796a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℕ)
9897, 36nnmulcld 11496 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ)
99 hashcl 13535 . . . . . . . . . . 11 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
10011, 99syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑋) ∈ ℕ0)
101100adantr 473 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (♯‘𝑋) ∈ ℕ0)
102 nnexpcl 13260 . . . . . . . . 9 (((2 · 𝑗) ∈ ℕ ∧ (♯‘𝑋) ∈ ℕ0) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10398, 101, 102syl2anc 576 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10495, 103sseldi 3858 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ (0[,]+∞))
105 eqid 2778 . . . . . . 7 (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))
106104, 105fmptd 6703 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))):ℕ⟶(0[,]+∞))
10789, 106sge0xrcl 42099 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) ∈ ℝ*)
108 pnfxr 10496 . . . . . . 7 +∞ ∈ ℝ*
109108a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
110 1nn 11454 . . . . . . . . . 10 1 ∈ ℕ
11195, 110sselii 3857 . . . . . . . . 9 1 ∈ (0[,]+∞)
112111a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
113 eqid 2778 . . . . . . . 8 (𝑗 ∈ ℕ ↦ 1) = (𝑗 ∈ ℕ ↦ 1)
114112, 113fmptd 6703 . . . . . . 7 (𝜑 → (𝑗 ∈ ℕ ↦ 1):ℕ⟶(0[,]+∞))
11589, 114sge0xrcl 42099 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ∈ ℝ*)
116 nnnfi 13152 . . . . . . . . . 10 ¬ ℕ ∈ Fin
117116a1i 11 . . . . . . . . 9 (𝜑 → ¬ ℕ ∈ Fin)
118 1rp 12211 . . . . . . . . . 10 1 ∈ ℝ+
119118a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ+)
12089, 117, 119sge0rpcpnf 42135 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) = +∞)
121120eqcomd 2784 . . . . . . 7 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
122109, 121xreqled 41028 . . . . . 6 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
123 nfv 1873 . . . . . . 7 𝑗𝜑
124114fvmptelrn 6702 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
125103nnge1d 11491 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ≤ ((2 · 𝑗)↑(♯‘𝑋)))
126123, 89, 124, 104, 125sge0lempt 42124 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
127109, 115, 107, 122, 126xrletrd 12375 . . . . 5 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
128107, 127xrgepnfd 41029 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) = +∞)
129 eqidd 2779 . . . 4 (𝜑 → +∞ = +∞)
13088, 128, 1293eqtrrd 2819 . . 3 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
13135, 130jca 504 . 2 (𝜑 → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
132 nfcv 2932 . . . . . . 7 𝑗𝑖
133 nfmpt1 5026 . . . . . . 7 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
134132, 133nfeq 2943 . . . . . 6 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
135 nfcv 2932 . . . . . . . . 9 𝑘𝑖
136 nfcv 2932 . . . . . . . . . 10 𝑘
137 nfmpt1 5026 . . . . . . . . . 10 𝑘(𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
138136, 137nfmpt 5025 . . . . . . . . 9 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
139135, 138nfeq 2943 . . . . . . . 8 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
140 fveq1 6500 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
141140coeq2d 5584 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
142141fveq1d 6503 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
143142adantr 473 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
144139, 143ixpeq2d 40750 . . . . . . 7 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
145144adantr 473 . . . . . 6 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
146134, 145iuneq2df 40727 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
147146sseq2d 3891 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
148142fveq2d 6505 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
149148a1d 25 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
150139, 149ralrimi 3166 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
151150adantr 473 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
152151prodeq2d 15139 . . . . . . 7 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
153134, 152mpteq2da 5022 . . . . . 6 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
154153fveq2d 6505 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
155154eqeq2d 2788 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (+∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
156147, 155anbi12d 621 . . 3 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ((𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))))
157156rspcev 3535 . 2 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
15821, 131, 157syl2anc 576 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088  wrex 3089  Vcvv 3415  wss 3831  ifcif 4351  cop 4448   ciun 4793   class class class wbr 4930  cmpt 5009   × cxp 5406  ccom 5412  wf 6186  cfv 6190  (class class class)co 6978  1st c1st 7501  2nd c2nd 7502  𝑚 cmap 8208  Xcixp 8261  Fincfn 8308  cc 10335  cr 10336  0cc0 10337  1c1 10338   + caddc 10340   · cmul 10342  +∞cpnf 10473  *cxr 10475   < clt 10476  cmin 10672  -cneg 10673  cn 11441  2c2 11498  0cn0 11710  +crp 12207  (,)cioo 12557  [,)cico 12559  [,]cicc 12560  cexp 13247  chash 13508  cprod 15122  volcvol 23770  Σ^csumge0 42076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-dju 9126  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-z 11797  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-fl 12980  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-clim 14709  df-rlim 14710  df-sum 14907  df-prod 15123  df-rest 16555  df-topgen 16576  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-top 21209  df-topon 21226  df-bases 21261  df-cmp 21702  df-ovol 23771  df-vol 23772  df-sumge0 42077
This theorem is referenced by:  ovnpnfelsup  42273
  Copyright terms: Public domain W3C validator