Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicvrrex Structured version   Visualization version   GIF version

Theorem hoicvrrex 46533
Description: Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoicvrrex.fi (𝜑𝑋 ∈ Fin)
hoicvrrex.y (𝜑𝑌 ⊆ (ℝ ↑m 𝑋))
Assertion
Ref Expression
hoicvrrex (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝑖,𝑋,𝑗,𝑘   𝑖,𝑌   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝑌(𝑗,𝑘)

Proof of Theorem hoicvrrex
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nnre 12245 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
21renegcld 11662 . . . . . . . 8 (𝑗 ∈ ℕ → -𝑗 ∈ ℝ)
3 opelxpi 5691 . . . . . . . 8 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
42, 1, 3syl2anc 584 . . . . . . 7 (𝑗 ∈ ℕ → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
54ad2antlr 727 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ (ℝ × ℝ))
6 eqid 2735 . . . . . 6 (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
75, 6fmptd 7103 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ))
8 reex 11218 . . . . . . . . 9 ℝ ∈ V
98, 8xpex 7745 . . . . . . . 8 (ℝ × ℝ) ∈ V
109a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ∈ V)
11 hoicvrrex.fi . . . . . . 7 (𝜑𝑋 ∈ Fin)
12 elmapg 8851 . . . . . . 7 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1310, 11, 12syl2anc 584 . . . . . 6 (𝜑 → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
1413adantr 480 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩):𝑋⟶(ℝ × ℝ)))
157, 14mpbird 257 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
16 eqid 2735 . . . 4 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
1715, 16fmptd 7103 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
18 ovex 7436 . . . 4 ((ℝ × ℝ) ↑m 𝑋) ∈ V
19 nnex 12244 . . . 4 ℕ ∈ V
2018, 19elmap 8883 . . 3 ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
2117, 20sylibr 234 . 2 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
22 hoicvrrex.y . . . 4 (𝜑𝑌 ⊆ (ℝ ↑m 𝑋))
23 eqid 2735 . . . . . 6 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2423, 11hoicvr 46525 . . . . 5 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
25 eqidd 2736 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → ⟨-𝑗, 𝑗⟩ = ⟨-𝑗, 𝑗⟩)
2625cbvmptv 5225 . . . . . . . . . . . 12 (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
2726mpteq2i 5217 . . . . . . . . . . 11 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
2827a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)))
2928fveq1d 6877 . . . . . . . . 9 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
3029coeq2d 5842 . . . . . . . 8 (𝜑 → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
3130fveq1d 6877 . . . . . . 7 (𝜑 → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3231ixpeq2dv 8925 . . . . . 6 (𝜑X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3332iuneq2d 4998 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3424, 33sseqtrd 3995 . . . 4 (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
3522, 34sstrd 3969 . . 3 (𝜑𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
36 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3715elexd 3483 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V)
3816fvmpt2 6996 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
4039, 5fmpt3d 7105 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
4140adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗):𝑋⟶(ℝ × ℝ))
42 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4341, 42fvovco 45165 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))))
4439fveq1d 6877 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
4544adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘))
46 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → 𝑘𝑋)
47 opex 5439 . . . . . . . . . . . . . . . . . 18 ⟨-𝑗, 𝑗⟩ ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → ⟨-𝑗, 𝑗⟩ ∈ V)
496fvmpt2 6996 . . . . . . . . . . . . . . . . 17 ((𝑘𝑋 ∧ ⟨-𝑗, 𝑗⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5046, 48, 49syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5150adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5245, 51eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘) = ⟨-𝑗, 𝑗⟩)
5352fveq2d 6879 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (1st ‘⟨-𝑗, 𝑗⟩))
54 negex 11478 . . . . . . . . . . . . . . 15 -𝑗 ∈ V
55 vex 3463 . . . . . . . . . . . . . . 15 𝑗 ∈ V
5654, 55op1st 7994 . . . . . . . . . . . . . 14 (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗
5756a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨-𝑗, 𝑗⟩) = -𝑗)
5853, 57eqtrd 2770 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = -𝑗)
5952fveq2d 6879 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = (2nd ‘⟨-𝑗, 𝑗⟩))
6054, 55op2nd 7995 . . . . . . . . . . . . . 14 (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗
6160a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨-𝑗, 𝑗⟩) = 𝑗)
6259, 61eqtrd 2770 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘)) = 𝑗)
6358, 62oveq12d 7421 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))[,)(2nd ‘(((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)‘𝑘))) = (-𝑗[,)𝑗))
6443, 63eqtrd 2770 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) = (-𝑗[,)𝑗))
6564fveq2d 6879 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (vol‘(-𝑗[,)𝑗)))
66 volico 45960 . . . . . . . . . . . 12 ((-𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
672, 1, 66syl2anc 584 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0))
68 nnrp 13018 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
69 neglt 45261 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ+ → -𝑗 < 𝑗)
7068, 69syl 17 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → -𝑗 < 𝑗)
7170iftrued 4508 . . . . . . . . . . 11 (𝑗 ∈ ℕ → if(-𝑗 < 𝑗, (𝑗 − -𝑗), 0) = (𝑗 − -𝑗))
721recnd 11261 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7372, 72subnegd 11599 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (𝑗 + 𝑗))
74722timesd 12482 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (2 · 𝑗) = (𝑗 + 𝑗))
7573, 74eqtr4d 2773 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝑗 − -𝑗) = (2 · 𝑗))
7667, 71, 753eqtrd 2774 . . . . . . . . . 10 (𝑗 ∈ ℕ → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7776ad2antlr 727 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(-𝑗[,)𝑗)) = (2 · 𝑗))
7865, 77eqtrd 2770 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = (2 · 𝑗))
7978prodeq2dv 15936 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (2 · 𝑗))
8011adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
81 2cnd 12316 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
8272adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
8381, 82mulcld 11253 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
84 fprodconst 15992 . . . . . . . 8 ((𝑋 ∈ Fin ∧ (2 · 𝑗) ∈ ℂ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8580, 83, 84syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (2 · 𝑗) = ((2 · 𝑗)↑(♯‘𝑋)))
8679, 85eqtrd 2770 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)) = ((2 · 𝑗)↑(♯‘𝑋)))
8786mpteq2dva 5214 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))))
8887fveq2d 6879 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
8919a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9068ssriv 3962 . . . . . . . . . 10 ℕ ⊆ ℝ+
91 ioorp 13440 . . . . . . . . . . 11 (0(,)+∞) = ℝ+
9291eqcomi 2744 . . . . . . . . . 10 + = (0(,)+∞)
9390, 92sseqtri 4007 . . . . . . . . 9 ℕ ⊆ (0(,)+∞)
94 ioossicc 13448 . . . . . . . . 9 (0(,)+∞) ⊆ (0[,]+∞)
9593, 94sstri 3968 . . . . . . . 8 ℕ ⊆ (0[,]+∞)
96 2nn 12311 . . . . . . . . . . 11 2 ∈ ℕ
9796a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℕ)
9897, 36nnmulcld 12291 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ)
99 hashcl 14372 . . . . . . . . . . 11 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
10011, 99syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑋) ∈ ℕ0)
101100adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (♯‘𝑋) ∈ ℕ0)
102 nnexpcl 14090 . . . . . . . . 9 (((2 · 𝑗) ∈ ℕ ∧ (♯‘𝑋) ∈ ℕ0) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10398, 101, 102syl2anc 584 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ ℕ)
10495, 103sselid 3956 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑗)↑(♯‘𝑋)) ∈ (0[,]+∞))
105 eqid 2735 . . . . . . 7 (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))) = (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))
106104, 105fmptd 7103 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋))):ℕ⟶(0[,]+∞))
10789, 106sge0xrcl 46362 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) ∈ ℝ*)
108 pnfxr 11287 . . . . . . 7 +∞ ∈ ℝ*
109108a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
110 1nn 12249 . . . . . . . . . 10 1 ∈ ℕ
11195, 110sselii 3955 . . . . . . . . 9 1 ∈ (0[,]+∞)
112111a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
113 eqid 2735 . . . . . . . 8 (𝑗 ∈ ℕ ↦ 1) = (𝑗 ∈ ℕ ↦ 1)
114112, 113fmptd 7103 . . . . . . 7 (𝜑 → (𝑗 ∈ ℕ ↦ 1):ℕ⟶(0[,]+∞))
11589, 114sge0xrcl 46362 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ∈ ℝ*)
116 nnnfi 13982 . . . . . . . . . 10 ¬ ℕ ∈ Fin
117116a1i 11 . . . . . . . . 9 (𝜑 → ¬ ℕ ∈ Fin)
118 1rp 13010 . . . . . . . . . 10 1 ∈ ℝ+
119118a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ+)
12089, 117, 119sge0rpcpnf 46398 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) = +∞)
121120eqcomd 2741 . . . . . . 7 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
122109, 121xreqled 45305 . . . . . 6 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ 1)))
123 nfv 1914 . . . . . . 7 𝑗𝜑
124114fvmptelcdm 7102 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ∈ (0[,]+∞))
125103nnge1d 12286 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 1 ≤ ((2 · 𝑗)↑(♯‘𝑋)))
126123, 89, 124, 104, 125sge0lempt 46387 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 1)) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
127109, 115, 107, 122, 126xrletrd 13176 . . . . 5 (𝜑 → +∞ ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))))
128107, 127xrgepnfd 45306 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((2 · 𝑗)↑(♯‘𝑋)))) = +∞)
129 eqidd 2736 . . . 4 (𝜑 → +∞ = +∞)
13088, 128, 1293eqtrrd 2775 . . 3 (𝜑 → +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
13135, 130jca 511 . 2 (𝜑 → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
132 nfcv 2898 . . . . . . 7 𝑗𝑖
133 nfmpt1 5220 . . . . . . 7 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
134132, 133nfeq 2912 . . . . . 6 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
135 nfcv 2898 . . . . . . . . 9 𝑘𝑖
136 nfcv 2898 . . . . . . . . . 10 𝑘
137 nfmpt1 5220 . . . . . . . . . 10 𝑘(𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)
138136, 137nfmpt 5219 . . . . . . . . 9 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
139135, 138nfeq 2912 . . . . . . . 8 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))
140 fveq1 6874 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))
141140coeq2d 5842 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗)))
142141fveq1d 6877 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
143142adantr 480 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
144139, 143ixpeq2d 45040 . . . . . . 7 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
145144adantr 480 . . . . . 6 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
146134, 145iuneq2df 45019 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))
147146sseq2d 3991 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
148142fveq2d 6879 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
149148a1d 25 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
150139, 149ralrimi 3240 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
151150adantr 480 . . . . . . . 8 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
152151prodeq2d 15935 . . . . . . 7 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))
153134, 152mpteq2da 5213 . . . . . 6 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))
154153fveq2d 6879 . . . . 5 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))
155154eqeq2d 2746 . . . 4 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → (+∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘))))))
156147, 155anbi12d 632 . . 3 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) → ((𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))))
157156rspcev 3601 . 2 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨-𝑗, 𝑗⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
15821, 131, 157syl2anc 584 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926  ifcif 4500  cop 4607   ciun 4967   class class class wbr 5119  cmpt 5201   × cxp 5652  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  m cmap 8838  Xcixp 8909  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  +∞cpnf 11264  *cxr 11266   < clt 11267  cmin 11464  -cneg 11465  cn 12238  2c2 12293  0cn0 12499  +crp 13006  (,)cioo 13360  [,)cico 13362  [,]cicc 13363  cexp 14077  chash 14346  cprod 15917  volcvol 25414  Σ^csumge0 46339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-prod 15918  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cmp 23323  df-ovol 25415  df-vol 25416  df-sumge0 46340
This theorem is referenced by:  ovnpnfelsup  46536
  Copyright terms: Public domain W3C validator