Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoi2toco Structured version   Visualization version   GIF version

Theorem hoi2toco 46644
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoi2toco.1 𝑘𝜑
hoi2toco.c 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
Assertion
Ref Expression
hoi2toco (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoi2toco
StepHypRef Expression
1 hoi2toco.1 . 2 𝑘𝜑
2 hoi2toco.c . . . . . . 7 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
32funmpt2 6520 . . . . . 6 Fun 𝐼
43a1i 11 . . . . 5 (𝜑 → Fun 𝐼)
54adantr 480 . . . 4 ((𝜑𝑘𝑋) → Fun 𝐼)
6 simpr 484 . . . . 5 ((𝜑𝑘𝑋) → 𝑘𝑋)
72dmeqi 5844 . . . . . . . 8 dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
87a1i 11 . . . . . . 7 (𝜑 → dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
9 opex 5404 . . . . . . . . . 10 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V
1092a1i 12 . . . . . . . . 9 (𝜑 → (𝑘𝑋 → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V))
111, 10ralrimi 3230 . . . . . . . 8 (𝜑 → ∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
12 dmmptg 6189 . . . . . . . 8 (∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
1311, 12syl 17 . . . . . . 7 (𝜑 → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
148, 13eqtr2d 2767 . . . . . 6 (𝜑𝑋 = dom 𝐼)
1514adantr 480 . . . . 5 ((𝜑𝑘𝑋) → 𝑋 = dom 𝐼)
166, 15eleqtrd 2833 . . . 4 ((𝜑𝑘𝑋) → 𝑘 ∈ dom 𝐼)
17 fvco 6920 . . . 4 ((Fun 𝐼𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
185, 16, 17syl2anc 584 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
199a1i 11 . . . . 5 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
202fvmpt2 6940 . . . . 5 ((𝑘𝑋 ∧ ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
216, 19, 20syl2anc 584 . . . 4 ((𝜑𝑘𝑋) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
2221fveq2d 6826 . . 3 ((𝜑𝑘𝑋) → ([,)‘(𝐼𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
23 df-ov 7349 . . . . 5 ((𝐴𝑘)[,)(𝐵𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩)
2423eqcomi 2740 . . . 4 ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘))
2524a1i 11 . . 3 ((𝜑𝑘𝑋) → ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘)))
2618, 22, 253eqtrd 2770 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
271, 26ixpeq2d 45104 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  Vcvv 3436  cop 4582  cmpt 5172  dom cdm 5616  ccom 5620  Fun wfun 6475  cfv 6481  (class class class)co 7346  Xcixp 8821  [,)cico 13244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-ixp 8822
This theorem is referenced by:  opnvonmbllem1  46669
  Copyright terms: Public domain W3C validator