![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoi2toco | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoi2toco.1 | ⊢ Ⅎ𝑘𝜑 |
hoi2toco.c | ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) |
Ref | Expression |
---|---|
hoi2toco | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoi2toco.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | hoi2toco.c | . . . . . . 7 ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) | |
3 | 2 | funmpt2 6586 | . . . . . 6 ⊢ Fun 𝐼 |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun 𝐼) |
5 | 4 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → Fun 𝐼) |
6 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
7 | 2 | dmeqi 5903 | . . . . . . . 8 ⊢ dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩)) |
9 | opex 5463 | . . . . . . . . . 10 ⊢ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩ ∈ V | |
10 | 9 | 2a1i 12 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩ ∈ V)) |
11 | 1, 10 | ralrimi 3252 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩ ∈ V) |
12 | dmmptg 6240 | . . . . . . . 8 ⊢ (∀𝑘 ∈ 𝑋 ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩ ∈ V → dom (𝑘 ∈ 𝑋 ↦ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) = 𝑋) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝜑 → dom (𝑘 ∈ 𝑋 ↦ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) = 𝑋) |
14 | 8, 13 | eqtr2d 2771 | . . . . . 6 ⊢ (𝜑 → 𝑋 = dom 𝐼) |
15 | 14 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑋 = dom 𝐼) |
16 | 6, 15 | eleqtrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ dom 𝐼) |
17 | fvco 6988 | . . . 4 ⊢ ((Fun 𝐼 ∧ 𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) | |
18 | 5, 16, 17 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) |
19 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩ ∈ V) |
20 | 2 | fvmpt2 7008 | . . . . 5 ⊢ ((𝑘 ∈ 𝑋 ∧ ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩ ∈ V) → (𝐼‘𝑘) = ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) |
21 | 6, 19, 20 | syl2anc 582 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) = ⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) |
22 | 21 | fveq2d 6894 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘(𝐼‘𝑘)) = ([,)‘⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩)) |
23 | df-ov 7414 | . . . . 5 ⊢ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ([,)‘⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) | |
24 | 23 | eqcomi 2739 | . . . 4 ⊢ ([,)‘⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
25 | 24 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘⟨(𝐴‘𝑘), (𝐵‘𝑘)⟩) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
26 | 18, 22, 25 | 3eqtrd 2774 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
27 | 1, 26 | ixpeq2d 44056 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ∀wral 3059 Vcvv 3472 ⟨cop 4633 ↦ cmpt 5230 dom cdm 5675 ∘ ccom 5679 Fun wfun 6536 ‘cfv 6542 (class class class)co 7411 Xcixp 8893 [,)cico 13330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-ov 7414 df-ixp 8894 |
This theorem is referenced by: opnvonmbllem1 45646 |
Copyright terms: Public domain | W3C validator |