Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoi2toco Structured version   Visualization version   GIF version

Theorem hoi2toco 44534
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoi2toco.1 𝑘𝜑
hoi2toco.c 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
Assertion
Ref Expression
hoi2toco (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoi2toco
StepHypRef Expression
1 hoi2toco.1 . 2 𝑘𝜑
2 hoi2toco.c . . . . . . 7 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
32funmpt2 6524 . . . . . 6 Fun 𝐼
43a1i 11 . . . . 5 (𝜑 → Fun 𝐼)
54adantr 481 . . . 4 ((𝜑𝑘𝑋) → Fun 𝐼)
6 simpr 485 . . . . 5 ((𝜑𝑘𝑋) → 𝑘𝑋)
72dmeqi 5847 . . . . . . . 8 dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
87a1i 11 . . . . . . 7 (𝜑 → dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
9 opex 5410 . . . . . . . . . 10 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V
1092a1i 12 . . . . . . . . 9 (𝜑 → (𝑘𝑋 → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V))
111, 10ralrimi 3236 . . . . . . . 8 (𝜑 → ∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
12 dmmptg 6181 . . . . . . . 8 (∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
1311, 12syl 17 . . . . . . 7 (𝜑 → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
148, 13eqtr2d 2777 . . . . . 6 (𝜑𝑋 = dom 𝐼)
1514adantr 481 . . . . 5 ((𝜑𝑘𝑋) → 𝑋 = dom 𝐼)
166, 15eleqtrd 2839 . . . 4 ((𝜑𝑘𝑋) → 𝑘 ∈ dom 𝐼)
17 fvco 6923 . . . 4 ((Fun 𝐼𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
185, 16, 17syl2anc 584 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
199a1i 11 . . . . 5 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
202fvmpt2 6943 . . . . 5 ((𝑘𝑋 ∧ ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
216, 19, 20syl2anc 584 . . . 4 ((𝜑𝑘𝑋) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
2221fveq2d 6830 . . 3 ((𝜑𝑘𝑋) → ([,)‘(𝐼𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
23 df-ov 7341 . . . . 5 ((𝐴𝑘)[,)(𝐵𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩)
2423eqcomi 2745 . . . 4 ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘))
2524a1i 11 . . 3 ((𝜑𝑘𝑋) → ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘)))
2618, 22, 253eqtrd 2780 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
271, 26ixpeq2d 42988 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wnf 1784  wcel 2105  wral 3061  Vcvv 3441  cop 4580  cmpt 5176  dom cdm 5621  ccom 5625  Fun wfun 6474  cfv 6480  (class class class)co 7338  Xcixp 8757  [,)cico 13183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-fv 6488  df-ov 7341  df-ixp 8758
This theorem is referenced by:  opnvonmbllem1  44559
  Copyright terms: Public domain W3C validator