| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoi2toco | Structured version Visualization version GIF version | ||
| Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoi2toco.1 | ⊢ Ⅎ𝑘𝜑 |
| hoi2toco.c | ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
| Ref | Expression |
|---|---|
| hoi2toco | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoi2toco.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | hoi2toco.c | . . . . . . 7 ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
| 3 | 2 | funmpt2 6580 | . . . . . 6 ⊢ Fun 𝐼 |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun 𝐼) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → Fun 𝐼) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
| 7 | 2 | dmeqi 5889 | . . . . . . . 8 ⊢ dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
| 9 | opex 5444 | . . . . . . . . . 10 ⊢ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V | |
| 10 | 9 | 2a1i 12 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V)) |
| 11 | 1, 10 | ralrimi 3244 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
| 12 | dmmptg 6236 | . . . . . . . 8 ⊢ (∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) | |
| 13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝜑 → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) |
| 14 | 8, 13 | eqtr2d 2772 | . . . . . 6 ⊢ (𝜑 → 𝑋 = dom 𝐼) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑋 = dom 𝐼) |
| 16 | 6, 15 | eleqtrd 2837 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ dom 𝐼) |
| 17 | fvco 6982 | . . . 4 ⊢ ((Fun 𝐼 ∧ 𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) | |
| 18 | 5, 16, 17 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) |
| 19 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
| 20 | 2 | fvmpt2 7002 | . . . . 5 ⊢ ((𝑘 ∈ 𝑋 ∧ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
| 21 | 6, 19, 20 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
| 22 | 21 | fveq2d 6885 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘(𝐼‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
| 23 | df-ov 7413 | . . . . 5 ⊢ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
| 24 | 23 | eqcomi 2745 | . . . 4 ⊢ ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
| 25 | 24 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 26 | 18, 22, 25 | 3eqtrd 2775 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 27 | 1, 26 | ixpeq2d 45072 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 〈cop 4612 ↦ cmpt 5206 dom cdm 5659 ∘ ccom 5663 Fun wfun 6530 ‘cfv 6536 (class class class)co 7410 Xcixp 8916 [,)cico 13369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ov 7413 df-ixp 8917 |
| This theorem is referenced by: opnvonmbllem1 46641 |
| Copyright terms: Public domain | W3C validator |