Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoi2toco | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoi2toco.1 | ⊢ Ⅎ𝑘𝜑 |
hoi2toco.c | ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
Ref | Expression |
---|---|
hoi2toco | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoi2toco.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | hoi2toco.c | . . . . . . 7 ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
3 | 2 | funmpt2 6524 | . . . . . 6 ⊢ Fun 𝐼 |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun 𝐼) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → Fun 𝐼) |
6 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
7 | 2 | dmeqi 5847 | . . . . . . . 8 ⊢ dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
9 | opex 5410 | . . . . . . . . . 10 ⊢ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V | |
10 | 9 | 2a1i 12 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V)) |
11 | 1, 10 | ralrimi 3236 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
12 | dmmptg 6181 | . . . . . . . 8 ⊢ (∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝜑 → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) |
14 | 8, 13 | eqtr2d 2777 | . . . . . 6 ⊢ (𝜑 → 𝑋 = dom 𝐼) |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑋 = dom 𝐼) |
16 | 6, 15 | eleqtrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ dom 𝐼) |
17 | fvco 6923 | . . . 4 ⊢ ((Fun 𝐼 ∧ 𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) | |
18 | 5, 16, 17 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) |
19 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
20 | 2 | fvmpt2 6943 | . . . . 5 ⊢ ((𝑘 ∈ 𝑋 ∧ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
21 | 6, 19, 20 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
22 | 21 | fveq2d 6830 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘(𝐼‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
23 | df-ov 7341 | . . . . 5 ⊢ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
24 | 23 | eqcomi 2745 | . . . 4 ⊢ ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
25 | 24 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
26 | 18, 22, 25 | 3eqtrd 2780 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
27 | 1, 26 | ixpeq2d 42988 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 〈cop 4580 ↦ cmpt 5176 dom cdm 5621 ∘ ccom 5625 Fun wfun 6474 ‘cfv 6480 (class class class)co 7338 Xcixp 8757 [,)cico 13183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-fv 6488 df-ov 7341 df-ixp 8758 |
This theorem is referenced by: opnvonmbllem1 44559 |
Copyright terms: Public domain | W3C validator |