Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoi2toco | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoi2toco.1 | ⊢ Ⅎ𝑘𝜑 |
hoi2toco.c | ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
Ref | Expression |
---|---|
hoi2toco | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoi2toco.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | hoi2toco.c | . . . . . . 7 ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
3 | 2 | funmpt2 6457 | . . . . . 6 ⊢ Fun 𝐼 |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun 𝐼) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → Fun 𝐼) |
6 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
7 | 2 | dmeqi 5802 | . . . . . . . 8 ⊢ dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
9 | opex 5373 | . . . . . . . . . 10 ⊢ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V | |
10 | 9 | 2a1i 12 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V)) |
11 | 1, 10 | ralrimi 3139 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
12 | dmmptg 6134 | . . . . . . . 8 ⊢ (∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝜑 → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) |
14 | 8, 13 | eqtr2d 2779 | . . . . . 6 ⊢ (𝜑 → 𝑋 = dom 𝐼) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑋 = dom 𝐼) |
16 | 6, 15 | eleqtrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ dom 𝐼) |
17 | fvco 6848 | . . . 4 ⊢ ((Fun 𝐼 ∧ 𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) | |
18 | 5, 16, 17 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) |
19 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
20 | 2 | fvmpt2 6868 | . . . . 5 ⊢ ((𝑘 ∈ 𝑋 ∧ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
21 | 6, 19, 20 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
22 | 21 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘(𝐼‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
23 | df-ov 7258 | . . . . 5 ⊢ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
24 | 23 | eqcomi 2747 | . . . 4 ⊢ ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
25 | 24 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
26 | 18, 22, 25 | 3eqtrd 2782 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
27 | 1, 26 | ixpeq2d 42505 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 〈cop 4564 ↦ cmpt 5153 dom cdm 5580 ∘ ccom 5584 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 Xcixp 8643 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 df-ixp 8644 |
This theorem is referenced by: opnvonmbllem1 44060 |
Copyright terms: Public domain | W3C validator |