Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoi2toco Structured version   Visualization version   GIF version

Theorem hoi2toco 43246
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoi2toco.1 𝑘𝜑
hoi2toco.c 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
Assertion
Ref Expression
hoi2toco (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoi2toco
StepHypRef Expression
1 hoi2toco.1 . 2 𝑘𝜑
2 hoi2toco.c . . . . . . 7 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
32funmpt2 6363 . . . . . 6 Fun 𝐼
43a1i 11 . . . . 5 (𝜑 → Fun 𝐼)
54adantr 484 . . . 4 ((𝜑𝑘𝑋) → Fun 𝐼)
6 simpr 488 . . . . 5 ((𝜑𝑘𝑋) → 𝑘𝑋)
72dmeqi 5737 . . . . . . . 8 dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
87a1i 11 . . . . . . 7 (𝜑 → dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
9 opex 5321 . . . . . . . . . 10 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V
1092a1i 12 . . . . . . . . 9 (𝜑 → (𝑘𝑋 → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V))
111, 10ralrimi 3180 . . . . . . . 8 (𝜑 → ∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
12 dmmptg 6063 . . . . . . . 8 (∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
1311, 12syl 17 . . . . . . 7 (𝜑 → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
148, 13eqtr2d 2834 . . . . . 6 (𝜑𝑋 = dom 𝐼)
1514adantr 484 . . . . 5 ((𝜑𝑘𝑋) → 𝑋 = dom 𝐼)
166, 15eleqtrd 2892 . . . 4 ((𝜑𝑘𝑋) → 𝑘 ∈ dom 𝐼)
17 fvco 6736 . . . 4 ((Fun 𝐼𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
185, 16, 17syl2anc 587 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
199a1i 11 . . . . 5 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
202fvmpt2 6756 . . . . 5 ((𝑘𝑋 ∧ ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
216, 19, 20syl2anc 587 . . . 4 ((𝜑𝑘𝑋) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
2221fveq2d 6649 . . 3 ((𝜑𝑘𝑋) → ([,)‘(𝐼𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
23 df-ov 7138 . . . . 5 ((𝐴𝑘)[,)(𝐵𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩)
2423eqcomi 2807 . . . 4 ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘))
2524a1i 11 . . 3 ((𝜑𝑘𝑋) → ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘)))
2618, 22, 253eqtrd 2837 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
271, 26ixpeq2d 41702 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wral 3106  Vcvv 3441  cop 4531  cmpt 5110  dom cdm 5519  ccom 5523  Fun wfun 6318  cfv 6324  (class class class)co 7135  Xcixp 8444  [,)cico 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-ov 7138  df-ixp 8445
This theorem is referenced by:  opnvonmbllem1  43271
  Copyright terms: Public domain W3C validator