Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoi2toco Structured version   Visualization version   GIF version

Theorem hoi2toco 44145
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoi2toco.1 𝑘𝜑
hoi2toco.c 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
Assertion
Ref Expression
hoi2toco (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoi2toco
StepHypRef Expression
1 hoi2toco.1 . 2 𝑘𝜑
2 hoi2toco.c . . . . . . 7 𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
32funmpt2 6473 . . . . . 6 Fun 𝐼
43a1i 11 . . . . 5 (𝜑 → Fun 𝐼)
54adantr 481 . . . 4 ((𝜑𝑘𝑋) → Fun 𝐼)
6 simpr 485 . . . . 5 ((𝜑𝑘𝑋) → 𝑘𝑋)
72dmeqi 5813 . . . . . . . 8 dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)
87a1i 11 . . . . . . 7 (𝜑 → dom 𝐼 = dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
9 opex 5379 . . . . . . . . . 10 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V
1092a1i 12 . . . . . . . . 9 (𝜑 → (𝑘𝑋 → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V))
111, 10ralrimi 3141 . . . . . . . 8 (𝜑 → ∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
12 dmmptg 6145 . . . . . . . 8 (∀𝑘𝑋 ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
1311, 12syl 17 . . . . . . 7 (𝜑 → dom (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) = 𝑋)
148, 13eqtr2d 2779 . . . . . 6 (𝜑𝑋 = dom 𝐼)
1514adantr 481 . . . . 5 ((𝜑𝑘𝑋) → 𝑋 = dom 𝐼)
166, 15eleqtrd 2841 . . . 4 ((𝜑𝑘𝑋) → 𝑘 ∈ dom 𝐼)
17 fvco 6866 . . . 4 ((Fun 𝐼𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
185, 16, 17syl2anc 584 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼𝑘)))
199a1i 11 . . . . 5 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
202fvmpt2 6886 . . . . 5 ((𝑘𝑋 ∧ ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
216, 19, 20syl2anc 584 . . . 4 ((𝜑𝑘𝑋) → (𝐼𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
2221fveq2d 6778 . . 3 ((𝜑𝑘𝑋) → ([,)‘(𝐼𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
23 df-ov 7278 . . . . 5 ((𝐴𝑘)[,)(𝐵𝑘)) = ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩)
2423eqcomi 2747 . . . 4 ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘))
2524a1i 11 . . 3 ((𝜑𝑘𝑋) → ([,)‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = ((𝐴𝑘)[,)(𝐵𝑘)))
2618, 22, 253eqtrd 2782 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
271, 26ixpeq2d 42616 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  Vcvv 3432  cop 4567  cmpt 5157  dom cdm 5589  ccom 5593  Fun wfun 6427  cfv 6433  (class class class)co 7275  Xcixp 8685  [,)cico 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-ixp 8686
This theorem is referenced by:  opnvonmbllem1  44170
  Copyright terms: Public domain W3C validator