![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoi2toco | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoi2toco.1 | ⊢ Ⅎ𝑘𝜑 |
hoi2toco.c | ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
Ref | Expression |
---|---|
hoi2toco | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoi2toco.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | hoi2toco.c | . . . . . . 7 ⊢ 𝐼 = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
3 | 2 | funmpt2 6174 | . . . . . 6 ⊢ Fun 𝐼 |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun 𝐼) |
5 | 4 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → Fun 𝐼) |
6 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
7 | 2 | dmeqi 5570 | . . . . . . . 8 ⊢ dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → dom 𝐼 = dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
9 | opex 5164 | . . . . . . . . . 10 ⊢ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V | |
10 | 9 | 2a1i 12 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V)) |
11 | 1, 10 | ralrimi 3139 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
12 | dmmptg 5886 | . . . . . . . 8 ⊢ (∀𝑘 ∈ 𝑋 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝜑 → dom (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = 𝑋) |
14 | 8, 13 | eqtr2d 2815 | . . . . . 6 ⊢ (𝜑 → 𝑋 = dom 𝐼) |
15 | 14 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑋 = dom 𝐼) |
16 | 6, 15 | eleqtrd 2861 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ dom 𝐼) |
17 | fvco 6534 | . . . 4 ⊢ ((Fun 𝐼 ∧ 𝑘 ∈ dom 𝐼) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) | |
18 | 5, 16, 17 | syl2anc 579 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ([,)‘(𝐼‘𝑘))) |
19 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
20 | 2 | fvmpt2 6552 | . . . . 5 ⊢ ((𝑘 ∈ 𝑋 ∧ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
21 | 6, 19, 20 | syl2anc 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
22 | 21 | fveq2d 6450 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘(𝐼‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
23 | df-ov 6925 | . . . . 5 ⊢ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | |
24 | 23 | eqcomi 2787 | . . . 4 ⊢ ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
25 | 24 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ([,)‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
26 | 18, 22, 25 | 3eqtrd 2818 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
27 | 1, 26 | ixpeq2d 40168 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 Ⅎwnf 1827 ∈ wcel 2107 ∀wral 3090 Vcvv 3398 〈cop 4404 ↦ cmpt 4965 dom cdm 5355 ∘ ccom 5359 Fun wfun 6129 ‘cfv 6135 (class class class)co 6922 Xcixp 8194 [,)cico 12489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 df-ov 6925 df-ixp 8195 |
This theorem is referenced by: opnvonmbllem1 41773 |
Copyright terms: Public domain | W3C validator |