Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoilem1 Structured version   Visualization version   GIF version

Theorem ovnhoilem1 46599
Description: The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. First part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoilem1.x (𝜑𝑋 ∈ Fin)
ovnhoilem1.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoilem1.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoilem1.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoilem1.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnhoilem1.h 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
Assertion
Ref Expression
ovnhoilem1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑧   𝐵,𝑖,𝑗,𝑧   𝑖,𝐻,𝑗   𝑖,𝐼,𝑧   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐴(𝑘)   𝐵(𝑘)   𝐻(𝑧,𝑘)   𝐼(𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnhoilem1
StepHypRef Expression
1 ovnhoilem1.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoilem1.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 1914 . . . . 5 𝑘𝜑
5 ovnhoilem1.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelcdmda 7056 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoilem1.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelcdmda 7056 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 11224 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 46576 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑m 𝑋))
113, 10eqsstrd 3981 . . 3 (𝜑𝐼 ⊆ (ℝ ↑m 𝑋))
12 ovnhoilem1.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
131, 11, 12ovnval2 46543 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
14 iftrue 4494 . . . . 5 (𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
1514adantl 481 . . . 4 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
16 0xr 11221 . . . . . . 7 0 ∈ ℝ*
1716a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
18 pnfxr 11228 . . . . . . 7 +∞ ∈ ℝ*
1918a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
204, 1, 6, 8hoiprodcl3 46578 . . . . . 6 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞))
21 icogelb 13357 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞)) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2217, 19, 20, 21syl3anc 1373 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2322adantr 480 . . . 4 ((𝜑𝑋 = ∅) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2415, 23eqbrtrd 5129 . . 3 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
25 iffalse 4497 . . . . 5 𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
2625adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
27 ssrab2 4043 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
2812, 27eqsstri 3993 . . . . . 6 𝑀 ⊆ ℝ*
2928a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑀 ⊆ ℝ*)
30 icossxr 13393 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ*
3130, 20sselid 3944 . . . . . . . . 9 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
3231adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
33 opelxpi 5675 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
346, 8, 33syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
35 0re 11176 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
36 opelxpi 5675 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3735, 35, 36mp2an 692 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
3837a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3934, 38ifcld 4535 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) ∈ (ℝ × ℝ))
4039fmpttd 7087 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ))
41 reex 11159 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
4241, 41xpex 7729 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ∈ V
431, 42jctil 519 . . . . . . . . . . . . . . 15 (𝜑 → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin))
44 elmapg 8812 . . . . . . . . . . . . . . 15 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4543, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4640, 45mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋))
4746adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋))
48 ovnhoilem1.h . . . . . . . . . . . 12 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
4947, 48fmptd 7086 . . . . . . . . . . 11 (𝜑𝐻:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
50 ovex 7420 . . . . . . . . . . . 12 ((ℝ × ℝ) ↑m 𝑋) ∈ V
51 nnex 12192 . . . . . . . . . . . 12 ℕ ∈ V
5250, 51elmap 8844 . . . . . . . . . . 11 (𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐻:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5349, 52sylibr 234 . . . . . . . . . 10 (𝜑𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
55 eqidd 2730 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
5634fmpttd 7087 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ))
57 iftrue 4494 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 1 → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
5857mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 1 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
59 1nn 12197 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℕ
6059a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
61 mptexg 7195 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
621, 61syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
6348, 58, 60, 62fvmptd3 6991 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐻‘1) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
6463feq1d 6670 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐻‘1):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ)))
6556, 64mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻‘1):𝑋⟶(ℝ × ℝ))
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
67 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → 𝑘𝑋)
6866, 67fvovco 45187 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))))
6934elexd 3471 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
7063, 69fvmpt2d 6981 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐻‘1)‘𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
7170fveq2d 6862 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
72 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑘) ∈ V
73 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑘) ∈ V
7472, 73op1st 7976 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘)
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘))
7671, 75eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (𝐴𝑘))
7770fveq2d 6862 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
7872, 73op2nd 7977 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘)
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘))
8077, 79eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (𝐵𝑘))
8176, 80oveq12d 7405 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
8268, 81eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
8382ixpeq2dva 8885 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
8455, 3, 833eqtr4d 2774 . . . . . . . . . . . 12 (𝜑𝐼 = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
85 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑗 = 1 → (𝐻𝑗) = (𝐻‘1))
8685coeq2d 5826 . . . . . . . . . . . . . . . 16 (𝑗 = 1 → ([,) ∘ (𝐻𝑗)) = ([,) ∘ (𝐻‘1)))
8786fveq1d 6860 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (([,) ∘ (𝐻𝑗))‘𝑘) = (([,) ∘ (𝐻‘1))‘𝑘))
8887ixpeq2dv 8886 . . . . . . . . . . . . . 14 (𝑗 = 1 → X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
8988ssiun2s 5012 . . . . . . . . . . . . 13 (1 ∈ ℕ → X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9059, 89ax-mp 5 . . . . . . . . . . . 12 X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)
9184, 90eqsstrdi 3991 . . . . . . . . . . 11 (𝜑𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9291adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9382fveq2d 6862 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9493eqcomd 2735 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
9594prodeq2dv 15888 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
9695adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
97 1red 11175 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
98 icossicc 13397 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
994, 1, 65hoiprodcl 46545 . . . . . . . . . . . . . . 15 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,)+∞))
10098, 99sselid 3944 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,]+∞))
10187fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
102101prodeq2ad 45590 . . . . . . . . . . . . . 14 (𝑗 = 1 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
10397, 100, 102sge0snmpt 46381 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
104103eqcomd 2735 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
105104adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
106 nfv 1914 . . . . . . . . . . . 12 𝑗(𝜑 ∧ ¬ 𝑋 = ∅)
10751a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → ℕ ∈ V)
108 snssi 4772 . . . . . . . . . . . . . 14 (1 ∈ ℕ → {1} ⊆ ℕ)
10959, 108ax-mp 5 . . . . . . . . . . . . 13 {1} ⊆ ℕ
110109a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → {1} ⊆ ℕ)
111 nfv 1914 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1})
1121ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → 𝑋 ∈ Fin)
113 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝜑)
114 elsni 4606 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {1} → 𝑗 = 1)
115114adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝑗 = 1)
11665adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
11785adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 = 1) → (𝐻𝑗) = (𝐻‘1))
118117feq1d 6670 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝐻‘1):𝑋⟶(ℝ × ℝ)))
119116, 118mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = 1) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
120113, 115, 119syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
121120adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
122111, 112, 121hoiprodcl 46545 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,)+∞))
12398, 122sselid 3944 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,]+∞))
12438fmpttd 7087 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
125124adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
126 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝜑)
127 eldifi 4094 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ∈ ℕ)
128127adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝑗 ∈ ℕ)
12948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))))
13047elexd 3471 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ V)
131129, 130fvmpt2d 6981 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
132126, 128, 131syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
133 eldifsni 4754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ≠ 1)
134133neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ (ℕ ∖ {1}) → ¬ 𝑗 = 1)
135134iffalsed 4499 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
136135mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℕ ∖ {1}) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
137136adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
138132, 137eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ ⟨0, 0⟩))
139138feq1d 6670 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ)))
140125, 139mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
141140adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
142 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → 𝑘𝑋)
143141, 142fvovco 45187 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))))
14437elexi 3470 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨0, 0⟩ ∈ V
145144a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ⟨0, 0⟩ ∈ V)
146138, 145fvmpt2d 6981 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((𝐻𝑗)‘𝑘) = ⟨0, 0⟩)
147146fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = (1st ‘⟨0, 0⟩))
14816elexi 3470 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
149148, 148op1st 7976 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨0, 0⟩) = 0
150149a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘⟨0, 0⟩) = 0)
151147, 150eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = 0)
152146fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = (2nd ‘⟨0, 0⟩))
153148, 148op2nd 7977 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨0, 0⟩) = 0
154153a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘⟨0, 0⟩) = 0)
155152, 154eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = 0)
156151, 155oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))) = (0[,)0))
157 0le0 12287 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 0
158 ico0 13352 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((0[,)0) = ∅ ↔ 0 ≤ 0))
15916, 16, 158mp2an 692 . . . . . . . . . . . . . . . . . . . 20 ((0[,)0) = ∅ ↔ 0 ≤ 0)
160157, 159mpbir 231 . . . . . . . . . . . . . . . . . . 19 (0[,)0) = ∅
161160a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (0[,)0) = ∅)
162143, 156, 1613eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ∅)
163162fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘∅))
164 vol0 45957 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
165164a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘∅) = 0)
166163, 165eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
167166prodeq2dv 15888 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
168167adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
169 0cnd 11167 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
170 fprodconst 15944 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
1711, 169, 170syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
172171ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
173 neqne 2933 . . . . . . . . . . . . . . . . 17 𝑋 = ∅ → 𝑋 ≠ ∅)
174173adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
1751adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
176 hashnncl 14331 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
177175, 176syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
178174, 177mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑋 = ∅) → (♯‘𝑋) ∈ ℕ)
179 0exp 14062 . . . . . . . . . . . . . . 15 ((♯‘𝑋) ∈ ℕ → (0↑(♯‘𝑋)) = 0)
180178, 179syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑋 = ∅) → (0↑(♯‘𝑋)) = 0)
181180adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → (0↑(♯‘𝑋)) = 0)
182168, 172, 1813eqtrd 2768 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
183106, 107, 110, 123, 182sge0ss 46410 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
18496, 105, 1833eqtrd 2768 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
18592, 184jca 511 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
186 nfcv 2891 . . . . . . . . . . . . . . 15 𝑘𝑖
187 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘
188 nfmpt1 5206 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
189187, 188nfmpt 5205 . . . . . . . . . . . . . . . 16 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
19048, 189nfcxfr 2889 . . . . . . . . . . . . . . 15 𝑘𝐻
191186, 190nfeq 2905 . . . . . . . . . . . . . 14 𝑘 𝑖 = 𝐻
192 fveq1 6857 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (𝑖𝑗) = (𝐻𝑗))
193192coeq2d 5826 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐻𝑗)))
194193fveq1d 6860 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
195194adantr 480 . . . . . . . . . . . . . 14 ((𝑖 = 𝐻𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
196191, 195ixpeq2d 45062 . . . . . . . . . . . . 13 (𝑖 = 𝐻X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
197196iuneq2d 4986 . . . . . . . . . . . 12 (𝑖 = 𝐻 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
198197sseq2d 3979 . . . . . . . . . . 11 (𝑖 = 𝐻 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)))
199194fveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
200199a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
201191, 200ralrimi 3235 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
202201prodeq2d 15887 . . . . . . . . . . . . . 14 (𝑖 = 𝐻 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
203202mpteq2dv 5201 . . . . . . . . . . . . 13 (𝑖 = 𝐻 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
204203fveq2d 6862 . . . . . . . . . . . 12 (𝑖 = 𝐻 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
205204eqeq2d 2740 . . . . . . . . . . 11 (𝑖 = 𝐻 → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
206198, 205anbi12d 632 . . . . . . . . . 10 (𝑖 = 𝐻 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))))
207206rspcev 3588 . . . . . . . . 9 ((𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
20854, 185, 207syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
20932, 208jca 511 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = ∅) → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
210 eqeq1 2733 . . . . . . . . . 10 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
211210anbi2d 630 . . . . . . . . 9 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
212211rexbidv 3157 . . . . . . . 8 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
213212elrab 3659 . . . . . . 7 (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
214209, 213sylibr 234 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
21512eqcomi 2738 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀
216215a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀)
217214, 216eleqtrd 2830 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀)
218 infxrlb 13295 . . . . 5 ((𝑀 ⊆ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
21929, 217, 218syl2anc 584 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22026, 219eqbrtrd 5129 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22124, 220pm2.61dan 812 . 2 (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22213, 221eqbrtrd 5129 1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  c0 4296  ifcif 4488  {csn 4589  cop 4595   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  Fincfn 8918  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cn 12186  [,)cico 13308  [,]cicc 13309  cexp 14026  chash 14295  cprod 15869  volcvol 25364  Σ^csumge0 46360  voln*covoln 46534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-sumge0 46361  df-ovoln 46535
This theorem is referenced by:  ovnhoi  46601
  Copyright terms: Public domain W3C validator