Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoilem1 Structured version   Visualization version   GIF version

Theorem ovnhoilem1 46698
Description: The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. First part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoilem1.x (𝜑𝑋 ∈ Fin)
ovnhoilem1.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoilem1.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoilem1.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoilem1.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnhoilem1.h 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
Assertion
Ref Expression
ovnhoilem1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑧   𝐵,𝑖,𝑗,𝑧   𝑖,𝐻,𝑗   𝑖,𝐼,𝑧   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐴(𝑘)   𝐵(𝑘)   𝐻(𝑧,𝑘)   𝐼(𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnhoilem1
StepHypRef Expression
1 ovnhoilem1.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoilem1.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 1915 . . . . 5 𝑘𝜑
5 ovnhoilem1.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelcdmda 7017 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoilem1.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelcdmda 7017 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 11162 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 46675 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑m 𝑋))
113, 10eqsstrd 3964 . . 3 (𝜑𝐼 ⊆ (ℝ ↑m 𝑋))
12 ovnhoilem1.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
131, 11, 12ovnval2 46642 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
14 iftrue 4478 . . . . 5 (𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
1514adantl 481 . . . 4 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
16 0xr 11159 . . . . . . 7 0 ∈ ℝ*
1716a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
18 pnfxr 11166 . . . . . . 7 +∞ ∈ ℝ*
1918a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
204, 1, 6, 8hoiprodcl3 46677 . . . . . 6 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞))
21 icogelb 13296 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞)) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2217, 19, 20, 21syl3anc 1373 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2322adantr 480 . . . 4 ((𝜑𝑋 = ∅) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2415, 23eqbrtrd 5111 . . 3 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
25 iffalse 4481 . . . . 5 𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
2625adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
27 ssrab2 4027 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
2812, 27eqsstri 3976 . . . . . 6 𝑀 ⊆ ℝ*
2928a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑀 ⊆ ℝ*)
30 icossxr 13332 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ*
3130, 20sselid 3927 . . . . . . . . 9 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
3231adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
33 opelxpi 5651 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
346, 8, 33syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
35 0re 11114 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
36 opelxpi 5651 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3735, 35, 36mp2an 692 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
3837a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3934, 38ifcld 4519 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) ∈ (ℝ × ℝ))
4039fmpttd 7048 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ))
41 reex 11097 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
4241, 41xpex 7686 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ∈ V
431, 42jctil 519 . . . . . . . . . . . . . . 15 (𝜑 → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin))
44 elmapg 8763 . . . . . . . . . . . . . . 15 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4543, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4640, 45mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋))
4746adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋))
48 ovnhoilem1.h . . . . . . . . . . . 12 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
4947, 48fmptd 7047 . . . . . . . . . . 11 (𝜑𝐻:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
50 ovex 7379 . . . . . . . . . . . 12 ((ℝ × ℝ) ↑m 𝑋) ∈ V
51 nnex 12131 . . . . . . . . . . . 12 ℕ ∈ V
5250, 51elmap 8795 . . . . . . . . . . 11 (𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐻:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5349, 52sylibr 234 . . . . . . . . . 10 (𝜑𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
55 eqidd 2732 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
5634fmpttd 7048 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ))
57 iftrue 4478 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 1 → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
5857mpteq2dv 5183 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 1 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
59 1nn 12136 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℕ
6059a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
61 mptexg 7155 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
621, 61syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
6348, 58, 60, 62fvmptd3 6952 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐻‘1) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
6463feq1d 6633 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐻‘1):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ)))
6556, 64mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻‘1):𝑋⟶(ℝ × ℝ))
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
67 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → 𝑘𝑋)
6866, 67fvovco 45289 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))))
6934elexd 3460 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
7063, 69fvmpt2d 6942 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐻‘1)‘𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
7170fveq2d 6826 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
72 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑘) ∈ V
73 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑘) ∈ V
7472, 73op1st 7929 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘)
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘))
7671, 75eqtrd 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (𝐴𝑘))
7770fveq2d 6826 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
7872, 73op2nd 7930 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘)
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘))
8077, 79eqtrd 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (𝐵𝑘))
8176, 80oveq12d 7364 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
8268, 81eqtrd 2766 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
8382ixpeq2dva 8836 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
8455, 3, 833eqtr4d 2776 . . . . . . . . . . . 12 (𝜑𝐼 = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
85 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑗 = 1 → (𝐻𝑗) = (𝐻‘1))
8685coeq2d 5801 . . . . . . . . . . . . . . . 16 (𝑗 = 1 → ([,) ∘ (𝐻𝑗)) = ([,) ∘ (𝐻‘1)))
8786fveq1d 6824 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (([,) ∘ (𝐻𝑗))‘𝑘) = (([,) ∘ (𝐻‘1))‘𝑘))
8887ixpeq2dv 8837 . . . . . . . . . . . . . 14 (𝑗 = 1 → X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
8988ssiun2s 4995 . . . . . . . . . . . . 13 (1 ∈ ℕ → X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9059, 89ax-mp 5 . . . . . . . . . . . 12 X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)
9184, 90eqsstrdi 3974 . . . . . . . . . . 11 (𝜑𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9291adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9382fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9493eqcomd 2737 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
9594prodeq2dv 15829 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
9695adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
97 1red 11113 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
98 icossicc 13336 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
994, 1, 65hoiprodcl 46644 . . . . . . . . . . . . . . 15 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,)+∞))
10098, 99sselid 3927 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,]+∞))
10187fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
102101prodeq2ad 45691 . . . . . . . . . . . . . 14 (𝑗 = 1 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
10397, 100, 102sge0snmpt 46480 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
104103eqcomd 2737 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
105104adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
106 nfv 1915 . . . . . . . . . . . 12 𝑗(𝜑 ∧ ¬ 𝑋 = ∅)
10751a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → ℕ ∈ V)
108 snssi 4757 . . . . . . . . . . . . . 14 (1 ∈ ℕ → {1} ⊆ ℕ)
10959, 108ax-mp 5 . . . . . . . . . . . . 13 {1} ⊆ ℕ
110109a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → {1} ⊆ ℕ)
111 nfv 1915 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1})
1121ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → 𝑋 ∈ Fin)
113 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝜑)
114 elsni 4590 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {1} → 𝑗 = 1)
115114adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝑗 = 1)
11665adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
11785adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 = 1) → (𝐻𝑗) = (𝐻‘1))
118117feq1d 6633 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝐻‘1):𝑋⟶(ℝ × ℝ)))
119116, 118mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = 1) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
120113, 115, 119syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
121120adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
122111, 112, 121hoiprodcl 46644 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,)+∞))
12398, 122sselid 3927 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,]+∞))
12438fmpttd 7048 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
125124adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
126 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝜑)
127 eldifi 4078 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ∈ ℕ)
128127adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝑗 ∈ ℕ)
12948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))))
13047elexd 3460 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ V)
131129, 130fvmpt2d 6942 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
132126, 128, 131syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
133 eldifsni 4739 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ≠ 1)
134133neneqd 2933 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ (ℕ ∖ {1}) → ¬ 𝑗 = 1)
135134iffalsed 4483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
136135mpteq2dv 5183 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℕ ∖ {1}) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
137136adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
138132, 137eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ ⟨0, 0⟩))
139138feq1d 6633 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ)))
140125, 139mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
141140adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
142 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → 𝑘𝑋)
143141, 142fvovco 45289 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))))
14437elexi 3459 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨0, 0⟩ ∈ V
145144a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ⟨0, 0⟩ ∈ V)
146138, 145fvmpt2d 6942 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((𝐻𝑗)‘𝑘) = ⟨0, 0⟩)
147146fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = (1st ‘⟨0, 0⟩))
14816elexi 3459 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
149148, 148op1st 7929 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨0, 0⟩) = 0
150149a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘⟨0, 0⟩) = 0)
151147, 150eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = 0)
152146fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = (2nd ‘⟨0, 0⟩))
153148, 148op2nd 7930 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨0, 0⟩) = 0
154153a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘⟨0, 0⟩) = 0)
155152, 154eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = 0)
156151, 155oveq12d 7364 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))) = (0[,)0))
157 0le0 12226 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 0
158 ico0 13291 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((0[,)0) = ∅ ↔ 0 ≤ 0))
15916, 16, 158mp2an 692 . . . . . . . . . . . . . . . . . . . 20 ((0[,)0) = ∅ ↔ 0 ≤ 0)
160157, 159mpbir 231 . . . . . . . . . . . . . . . . . . 19 (0[,)0) = ∅
161160a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (0[,)0) = ∅)
162143, 156, 1613eqtrd 2770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ∅)
163162fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘∅))
164 vol0 46056 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
165164a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘∅) = 0)
166163, 165eqtrd 2766 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
167166prodeq2dv 15829 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
168167adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
169 0cnd 11105 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
170 fprodconst 15885 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
1711, 169, 170syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
172171ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
173 neqne 2936 . . . . . . . . . . . . . . . . 17 𝑋 = ∅ → 𝑋 ≠ ∅)
174173adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
1751adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
176 hashnncl 14273 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
177175, 176syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
178174, 177mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑋 = ∅) → (♯‘𝑋) ∈ ℕ)
179 0exp 14004 . . . . . . . . . . . . . . 15 ((♯‘𝑋) ∈ ℕ → (0↑(♯‘𝑋)) = 0)
180178, 179syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑋 = ∅) → (0↑(♯‘𝑋)) = 0)
181180adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → (0↑(♯‘𝑋)) = 0)
182168, 172, 1813eqtrd 2770 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
183106, 107, 110, 123, 182sge0ss 46509 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
18496, 105, 1833eqtrd 2770 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
18592, 184jca 511 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
186 nfcv 2894 . . . . . . . . . . . . . . 15 𝑘𝑖
187 nfcv 2894 . . . . . . . . . . . . . . . . 17 𝑘
188 nfmpt1 5188 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
189187, 188nfmpt 5187 . . . . . . . . . . . . . . . 16 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
19048, 189nfcxfr 2892 . . . . . . . . . . . . . . 15 𝑘𝐻
191186, 190nfeq 2908 . . . . . . . . . . . . . 14 𝑘 𝑖 = 𝐻
192 fveq1 6821 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (𝑖𝑗) = (𝐻𝑗))
193192coeq2d 5801 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐻𝑗)))
194193fveq1d 6824 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
195194adantr 480 . . . . . . . . . . . . . 14 ((𝑖 = 𝐻𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
196191, 195ixpeq2d 45164 . . . . . . . . . . . . 13 (𝑖 = 𝐻X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
197196iuneq2d 4970 . . . . . . . . . . . 12 (𝑖 = 𝐻 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
198197sseq2d 3962 . . . . . . . . . . 11 (𝑖 = 𝐻 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)))
199194fveq2d 6826 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
200199a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
201191, 200ralrimi 3230 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
202201prodeq2d 15828 . . . . . . . . . . . . . 14 (𝑖 = 𝐻 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
203202mpteq2dv 5183 . . . . . . . . . . . . 13 (𝑖 = 𝐻 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
204203fveq2d 6826 . . . . . . . . . . . 12 (𝑖 = 𝐻 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
205204eqeq2d 2742 . . . . . . . . . . 11 (𝑖 = 𝐻 → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
206198, 205anbi12d 632 . . . . . . . . . 10 (𝑖 = 𝐻 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))))
207206rspcev 3572 . . . . . . . . 9 ((𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
20854, 185, 207syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
20932, 208jca 511 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = ∅) → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
210 eqeq1 2735 . . . . . . . . . 10 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
211210anbi2d 630 . . . . . . . . 9 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
212211rexbidv 3156 . . . . . . . 8 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
213212elrab 3642 . . . . . . 7 (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
214209, 213sylibr 234 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
21512eqcomi 2740 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀
216215a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀)
217214, 216eleqtrd 2833 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀)
218 infxrlb 13234 . . . . 5 ((𝑀 ⊆ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
21929, 217, 218syl2anc 584 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22026, 219eqbrtrd 5111 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22124, 220pm2.61dan 812 . 2 (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22213, 221eqbrtrd 5111 1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  c0 4280  ifcif 4472  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089  cmpt 5170   × cxp 5612  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  m cmap 8750  Xcixp 8821  Fincfn 8869  infcinf 9325  cc 11004  cr 11005  0cc0 11006  1c1 11007  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cn 12125  [,)cico 13247  [,]cicc 13248  cexp 13968  chash 14237  cprod 15810  volcvol 25391  Σ^csumge0 46459  voln*covoln 46633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393  df-sumge0 46460  df-ovoln 46634
This theorem is referenced by:  ovnhoi  46700
  Copyright terms: Public domain W3C validator