Proof of Theorem ovnhoilem1
Step | Hyp | Ref
| Expression |
1 | | ovnhoilem1.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | | ovnhoilem1.c |
. . . . 5
⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
4 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
5 | | ovnhoilem1.a |
. . . . . 6
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
6 | 5 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
7 | | ovnhoilem1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
8 | 7 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
9 | 8 | rexrd 10956 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈
ℝ*) |
10 | 4, 6, 9 | hoissrrn2 44006 |
. . . 4
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ (ℝ ↑m 𝑋)) |
11 | 3, 10 | eqsstrd 3955 |
. . 3
⊢ (𝜑 → 𝐼 ⊆ (ℝ ↑m 𝑋)) |
12 | | ovnhoilem1.m |
. . 3
⊢ 𝑀 = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
13 | 1, 11, 12 | ovnval2 43973 |
. 2
⊢ (𝜑 → ((voln*‘𝑋)‘𝐼) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, <
))) |
14 | | iftrue 4462 |
. . . . 5
⊢ (𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) =
0) |
15 | 14 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) =
0) |
16 | | 0xr 10953 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ*) |
18 | | pnfxr 10960 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
19 | 18 | a1i 11 |
. . . . . 6
⊢ (𝜑 → +∞ ∈
ℝ*) |
20 | 4, 1, 6, 8 | hoiprodcl3 44008 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ (0[,)+∞)) |
21 | | icogelb 13059 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ (0[,)+∞)) → 0 ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
22 | 17, 19, 20, 21 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
23 | 22 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
24 | 15, 23 | eqbrtrd 5092 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
25 | | iffalse 4465 |
. . . . 5
⊢ (¬
𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) =
inf(𝑀, ℝ*,
< )) |
26 | 25 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, <
)) |
27 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ* |
28 | 12, 27 | eqsstri 3951 |
. . . . . 6
⊢ 𝑀 ⊆
ℝ* |
29 | 28 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑀 ⊆
ℝ*) |
30 | | icossxr 13093 |
. . . . . . . . . 10
⊢
(0[,)+∞) ⊆ ℝ* |
31 | 30, 20 | sselid 3915 |
. . . . . . . . 9
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈
ℝ*) |
32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈
ℝ*) |
33 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ (ℝ ×
ℝ)) |
34 | 6, 8, 33 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ (ℝ ×
ℝ)) |
35 | | 0re 10908 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
36 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ
× ℝ)) |
37 | 35, 35, 36 | mp2an 688 |
. . . . . . . . . . . . . . . . 17
⊢ 〈0,
0〉 ∈ (ℝ × ℝ) |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈0, 0〉 ∈ (ℝ
× ℝ)) |
39 | 34, 38 | ifcld 4502 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉) ∈ (ℝ
× ℝ)) |
40 | 39 | fmpttd 6971 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)):𝑋⟶(ℝ ×
ℝ)) |
41 | | reex 10893 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
∈ V |
42 | 41, 41 | xpex 7581 |
. . . . . . . . . . . . . . . 16
⊢ (ℝ
× ℝ) ∈ V |
43 | 1, 42 | jctil 519 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((ℝ × ℝ)
∈ V ∧ 𝑋 ∈
Fin)) |
44 | | elmapg 8586 |
. . . . . . . . . . . . . . 15
⊢
(((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)):𝑋⟶(ℝ ×
ℝ))) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)):𝑋⟶(ℝ ×
ℝ))) |
46 | 40, 45 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋)) |
47 | 46 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋)) |
48 | | ovnhoilem1.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) |
49 | 47, 48 | fmptd 6970 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻:ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
50 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ ((ℝ
× ℝ) ↑m 𝑋) ∈ V |
51 | | nnex 11909 |
. . . . . . . . . . . 12
⊢ ℕ
∈ V |
52 | 50, 51 | elmap 8617 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐻:ℕ⟶((ℝ
× ℝ) ↑m 𝑋)) |
53 | 49, 52 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
54 | 53 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐻 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
55 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
56 | 34 | fmpttd 6971 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉):𝑋⟶(ℝ ×
ℝ)) |
57 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 1 → if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
58 | 57 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 1 → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
59 | | 1nn 11914 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℕ |
60 | 59 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 1 ∈
ℕ) |
61 | | mptexg 7079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) ∈ V) |
62 | 1, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) ∈ V) |
63 | 48, 58, 60, 62 | fvmptd3 6880 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐻‘1) = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
64 | 63 | feq1d 6569 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐻‘1):𝑋⟶(ℝ × ℝ) ↔
(𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉):𝑋⟶(ℝ ×
ℝ))) |
65 | 56, 64 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐻‘1):𝑋⟶(ℝ ×
ℝ)) |
66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐻‘1):𝑋⟶(ℝ ×
ℝ)) |
67 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
68 | 66, 67 | fvovco 42621 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd
‘((𝐻‘1)‘𝑘)))) |
69 | 34 | elexd 3442 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) |
70 | 63, 69 | fvmpt2d 6870 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐻‘1)‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) |
71 | 70 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (1st
‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
72 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴‘𝑘) ∈ V |
73 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵‘𝑘) ∈ V |
74 | 72, 73 | op1st 7812 |
. . . . . . . . . . . . . . . . . 18
⊢
(1st ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐴‘𝑘) |
75 | 74 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐴‘𝑘)) |
76 | 71, 75 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (𝐴‘𝑘)) |
77 | 70 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (2nd
‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) |
78 | 72, 73 | op2nd 7813 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐵‘𝑘) |
79 | 78 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐵‘𝑘)) |
80 | 77, 79 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (𝐵‘𝑘)) |
81 | 76, 80 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd
‘((𝐻‘1)‘𝑘))) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
82 | 68, 81 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
83 | 82 | ixpeq2dva 8658 |
. . . . . . . . . . . . 13
⊢ (𝜑 → X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘1))‘𝑘) = X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
84 | 55, 3, 83 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘1))‘𝑘)) |
85 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 1 → (𝐻‘𝑗) = (𝐻‘1)) |
86 | 85 | coeq2d 5760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ([,) ∘ (𝐻‘𝑗)) = ([,) ∘ (𝐻‘1))) |
87 | 86 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (([,) ∘ (𝐻‘𝑗))‘𝑘) = (([,) ∘ (𝐻‘1))‘𝑘)) |
88 | 87 | ixpeq2dv 8659 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 1 → X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘1))‘𝑘)) |
89 | 88 | ssiun2s 4974 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℕ → X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) |
90 | 59, 89 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) |
91 | 84, 90 | eqsstrdi 3971 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) |
92 | 91 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) |
93 | 82 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
94 | 93 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) |
95 | 94 | prodeq2dv 15561 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) |
96 | 95 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) |
97 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) |
98 | | icossicc 13097 |
. . . . . . . . . . . . . . 15
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
99 | 4, 1, 65 | hoiprodcl 43975 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,)+∞)) |
100 | 98, 99 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,]+∞)) |
101 | 87 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (vol‘(([,)
∘ (𝐻‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) |
102 | 101 | prodeq2ad 43023 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 1 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) |
103 | 97, 100, 102 | sge0snmpt 43811 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) |
104 | 103 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) =
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) |
105 | 104 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) =
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) |
106 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝜑 ∧ ¬ 𝑋 = ∅) |
107 | 51 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ℕ ∈
V) |
108 | | snssi 4738 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℕ → {1} ⊆ ℕ) |
109 | 59, 108 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ {1}
⊆ ℕ |
110 | 109 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → {1} ⊆
ℕ) |
111 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) |
112 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → 𝑋 ∈ Fin) |
113 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {1}) → 𝜑) |
114 | | elsni 4575 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {1} → 𝑗 = 1) |
115 | 114 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {1}) → 𝑗 = 1) |
116 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝐻‘1):𝑋⟶(ℝ ×
ℝ)) |
117 | 85 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝐻‘𝑗) = (𝐻‘1)) |
118 | 117 | feq1d 6569 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = 1) → ((𝐻‘𝑗):𝑋⟶(ℝ × ℝ) ↔
(𝐻‘1):𝑋⟶(ℝ ×
ℝ))) |
119 | 116, 118 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
120 | 113, 115,
119 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ {1}) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
121 | 120 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
122 | 111, 112,
121 | hoiprodcl 43975 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) ∈ (0[,)+∞)) |
123 | 98, 122 | sselid 3915 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) ∈ (0[,]+∞)) |
124 | 38 | fmpttd 6971 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈0, 0〉):𝑋⟶(ℝ ×
ℝ)) |
125 | 124 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝑘 ∈ 𝑋 ↦ 〈0, 0〉):𝑋⟶(ℝ ×
ℝ)) |
126 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → 𝜑) |
127 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ 𝑗 ∈
ℕ) |
128 | 127 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → 𝑗 ∈
ℕ) |
129 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0,
0〉)))) |
130 | 47 | elexd 3442 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈
V) |
131 | 129, 130 | fvmpt2d 6870 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐻‘𝑗) = (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) |
132 | 126, 128,
131 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝐻‘𝑗) = (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) |
133 | | eldifsni 4720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ 𝑗 ≠
1) |
134 | 133 | neneqd 2947 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ ¬ 𝑗 =
1) |
135 | 134 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ if(𝑗 = 1,
〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉) = 〈0,
0〉) |
136 | 135 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) = (𝑘 ∈ 𝑋 ↦ 〈0, 0〉)) |
137 | 136 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) = (𝑘 ∈ 𝑋 ↦ 〈0, 0〉)) |
138 | 132, 137 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝐻‘𝑗) = (𝑘 ∈ 𝑋 ↦ 〈0, 0〉)) |
139 | 138 | feq1d 6569 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → ((𝐻‘𝑗):𝑋⟶(ℝ × ℝ) ↔
(𝑘 ∈ 𝑋 ↦ 〈0, 0〉):𝑋⟶(ℝ ×
ℝ))) |
140 | 125, 139 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
141 | 140 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
142 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
143 | 141, 142 | fvovco 42621 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘𝑗))‘𝑘) = ((1st ‘((𝐻‘𝑗)‘𝑘))[,)(2nd ‘((𝐻‘𝑗)‘𝑘)))) |
144 | 37 | elexi 3441 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 〈0,
0〉 ∈ V |
145 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → 〈0, 0〉 ∈
V) |
146 | 138, 145 | fvmpt2d 6870 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → ((𝐻‘𝑗)‘𝑘) = 〈0, 0〉) |
147 | 146 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘𝑗)‘𝑘)) = (1st ‘〈0,
0〉)) |
148 | 16 | elexi 3441 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
V |
149 | 148, 148 | op1st 7812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1st ‘〈0, 0〉) = 0 |
150 | 149 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (1st ‘〈0,
0〉) = 0) |
151 | 147, 150 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘𝑗)‘𝑘)) = 0) |
152 | 146 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘𝑗)‘𝑘)) = (2nd ‘〈0,
0〉)) |
153 | 148, 148 | op2nd 7813 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2nd ‘〈0, 0〉) = 0 |
154 | 153 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (2nd ‘〈0,
0〉) = 0) |
155 | 152, 154 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘𝑗)‘𝑘)) = 0) |
156 | 151, 155 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐻‘𝑗)‘𝑘))[,)(2nd ‘((𝐻‘𝑗)‘𝑘))) = (0[,)0)) |
157 | | 0le0 12004 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ≤
0 |
158 | | ico0 13054 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ* ∧ 0 ∈ ℝ*) → ((0[,)0)
= ∅ ↔ 0 ≤ 0)) |
159 | 16, 16, 158 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0[,)0)
= ∅ ↔ 0 ≤ 0) |
160 | 157, 159 | mpbir 230 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0[,)0) =
∅ |
161 | 160 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (0[,)0) = ∅) |
162 | 143, 156,
161 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘𝑗))‘𝑘) = ∅) |
163 | 162 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = (vol‘∅)) |
164 | | vol0 43390 |
. . . . . . . . . . . . . . . . 17
⊢
(vol‘∅) = 0 |
165 | 164 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (vol‘∅) =
0) |
166 | 163, 165 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = 0) |
167 | 166 | prodeq2dv 15561 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 0) |
168 | 167 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 0) |
169 | | 0cnd 10899 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℂ) |
170 | | fprodconst 15616 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ Fin ∧ 0 ∈
ℂ) → ∏𝑘
∈ 𝑋 0 =
(0↑(♯‘𝑋))) |
171 | 1, 169, 170 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) |
172 | 171 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 0 =
(0↑(♯‘𝑋))) |
173 | | neqne 2950 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
174 | 173 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
175 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
176 | | hashnncl 14009 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) |
177 | 175, 176 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
178 | 174, 177 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (♯‘𝑋) ∈
ℕ) |
179 | | 0exp 13746 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑋)
∈ ℕ → (0↑(♯‘𝑋)) = 0) |
180 | 178, 179 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) →
(0↑(♯‘𝑋))
= 0) |
181 | 180 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
(0↑(♯‘𝑋))
= 0) |
182 | 168, 172,
181 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = 0) |
183 | 106, 107,
110, 123, 182 | sge0ss 43840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) →
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) |
184 | 96, 105, 183 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) |
185 | 92, 184 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))))) |
186 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑖 |
187 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘ℕ |
188 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) |
189 | 187, 188 | nfmpt 5177 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) |
190 | 48, 189 | nfcxfr 2904 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝐻 |
191 | 186, 190 | nfeq 2919 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑖 = 𝐻 |
192 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐻 → (𝑖‘𝑗) = (𝐻‘𝑗)) |
193 | 192 | coeq2d 5760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐻 → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝐻‘𝑗))) |
194 | 193 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐻 → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐻‘𝑗))‘𝑘)) |
195 | 194 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐻 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐻‘𝑗))‘𝑘)) |
196 | 191, 195 | ixpeq2d 42505 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐻 → X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) |
197 | 196 | iuneq2d 4950 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐻 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) |
198 | 197 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐻 → (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ 𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘))) |
199 | 194 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐻 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))) |
200 | 199 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐻 → (𝑘 ∈ 𝑋 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) |
201 | 191, 200 | ralrimi 3139 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐻 → ∀𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))) |
202 | 201 | prodeq2d 15560 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐻 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))) |
203 | 202 | mpteq2dv 5172 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐻 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) |
204 | 203 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐻 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) |
205 | 204 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐻 → (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))))) |
206 | 198, 205 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐻 → ((𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))))) |
207 | 206 | rspcev 3552 |
. . . . . . . . 9
⊢ ((𝐻 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
208 | 54, 185, 207 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
209 | 32, 208 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
210 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑧 = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
211 | 210 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑧 = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
212 | 211 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑧 = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
213 | 212 | elrab 3617 |
. . . . . . 7
⊢
(∏𝑘 ∈
𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ↔ (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
214 | 209, 213 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
215 | 12 | eqcomi 2747 |
. . . . . . 7
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = 𝑀 |
216 | 215 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = 𝑀) |
217 | 214, 216 | eleqtrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ 𝑀) |
218 | | infxrlb 12997 |
. . . . 5
⊢ ((𝑀 ⊆ ℝ*
∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
219 | 29, 217, 218 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → inf(𝑀, ℝ*, < ) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
220 | 26, 219 | eqbrtrd 5092 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
221 | 24, 220 | pm2.61dan 809 |
. 2
⊢ (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
222 | 13, 221 | eqbrtrd 5092 |
1
⊢ (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |