Proof of Theorem ovnhoilem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovnhoilem1.x | . . 3
⊢ (𝜑 → 𝑋 ∈ Fin) | 
| 2 |  | ovnhoilem1.c | . . . . 5
⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) | 
| 3 | 2 | a1i 11 | . . . 4
⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 4 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑘𝜑 | 
| 5 |  | ovnhoilem1.a | . . . . . 6
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | 
| 6 | 5 | ffvelcdmda 7104 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) | 
| 7 |  | ovnhoilem1.b | . . . . . . 7
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | 
| 8 | 7 | ffvelcdmda 7104 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) | 
| 9 | 8 | rexrd 11311 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈
ℝ*) | 
| 10 | 4, 6, 9 | hoissrrn2 46593 | . . . 4
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ (ℝ ↑m 𝑋)) | 
| 11 | 3, 10 | eqsstrd 4018 | . . 3
⊢ (𝜑 → 𝐼 ⊆ (ℝ ↑m 𝑋)) | 
| 12 |  | ovnhoilem1.m | . . 3
⊢ 𝑀 = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | 
| 13 | 1, 11, 12 | ovnval2 46560 | . 2
⊢ (𝜑 → ((voln*‘𝑋)‘𝐼) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, <
))) | 
| 14 |  | iftrue 4531 | . . . . 5
⊢ (𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) =
0) | 
| 15 | 14 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) =
0) | 
| 16 |  | 0xr 11308 | . . . . . . 7
⊢ 0 ∈
ℝ* | 
| 17 | 16 | a1i 11 | . . . . . 6
⊢ (𝜑 → 0 ∈
ℝ*) | 
| 18 |  | pnfxr 11315 | . . . . . . 7
⊢ +∞
∈ ℝ* | 
| 19 | 18 | a1i 11 | . . . . . 6
⊢ (𝜑 → +∞ ∈
ℝ*) | 
| 20 | 4, 1, 6, 8 | hoiprodcl3 46595 | . . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ (0[,)+∞)) | 
| 21 |  | icogelb 13438 | . . . . . 6
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ (0[,)+∞)) → 0 ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 22 | 17, 19, 20, 21 | syl3anc 1373 | . . . . 5
⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 23 | 22 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 24 | 15, 23 | eqbrtrd 5165 | . . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 25 |  | iffalse 4534 | . . . . 5
⊢ (¬
𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) =
inf(𝑀, ℝ*,
< )) | 
| 26 | 25 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, <
)) | 
| 27 |  | ssrab2 4080 | . . . . . . 7
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ* | 
| 28 | 12, 27 | eqsstri 4030 | . . . . . 6
⊢ 𝑀 ⊆
ℝ* | 
| 29 | 28 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑀 ⊆
ℝ*) | 
| 30 |  | icossxr 13472 | . . . . . . . . . 10
⊢
(0[,)+∞) ⊆ ℝ* | 
| 31 | 30, 20 | sselid 3981 | . . . . . . . . 9
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈
ℝ*) | 
| 32 | 31 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈
ℝ*) | 
| 33 |  | opelxpi 5722 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ (ℝ ×
ℝ)) | 
| 34 | 6, 8, 33 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ (ℝ ×
ℝ)) | 
| 35 |  | 0re 11263 | . . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ | 
| 36 |  | opelxpi 5722 | . . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ
× ℝ)) | 
| 37 | 35, 35, 36 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ 〈0,
0〉 ∈ (ℝ × ℝ) | 
| 38 | 37 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈0, 0〉 ∈ (ℝ
× ℝ)) | 
| 39 | 34, 38 | ifcld 4572 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉) ∈ (ℝ
× ℝ)) | 
| 40 | 39 | fmpttd 7135 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)):𝑋⟶(ℝ ×
ℝ)) | 
| 41 |  | reex 11246 | . . . . . . . . . . . . . . . . 17
⊢ ℝ
∈ V | 
| 42 | 41, 41 | xpex 7773 | . . . . . . . . . . . . . . . 16
⊢ (ℝ
× ℝ) ∈ V | 
| 43 | 1, 42 | jctil 519 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((ℝ × ℝ)
∈ V ∧ 𝑋 ∈
Fin)) | 
| 44 |  | elmapg 8879 | . . . . . . . . . . . . . . 15
⊢
(((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)):𝑋⟶(ℝ ×
ℝ))) | 
| 45 | 43, 44 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)):𝑋⟶(ℝ ×
ℝ))) | 
| 46 | 40, 45 | mpbird 257 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋)) | 
| 47 | 46 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈ ((ℝ
× ℝ) ↑m 𝑋)) | 
| 48 |  | ovnhoilem1.h | . . . . . . . . . . . 12
⊢ 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) | 
| 49 | 47, 48 | fmptd 7134 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐻:ℕ⟶((ℝ × ℝ)
↑m 𝑋)) | 
| 50 |  | ovex 7464 | . . . . . . . . . . . 12
⊢ ((ℝ
× ℝ) ↑m 𝑋) ∈ V | 
| 51 |  | nnex 12272 | . . . . . . . . . . . 12
⊢ ℕ
∈ V | 
| 52 | 50, 51 | elmap 8911 | . . . . . . . . . . 11
⊢ (𝐻 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐻:ℕ⟶((ℝ
× ℝ) ↑m 𝑋)) | 
| 53 | 49, 52 | sylibr 234 | . . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) | 
| 54 | 53 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐻 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) | 
| 55 |  | eqidd 2738 | . . . . . . . . . . . . 13
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 56 | 34 | fmpttd 7135 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉):𝑋⟶(ℝ ×
ℝ)) | 
| 57 |  | iftrue 4531 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 1 → if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | 
| 58 | 57 | mpteq2dv 5244 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 1 → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) | 
| 59 |  | 1nn 12277 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℕ | 
| 60 | 59 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 1 ∈
ℕ) | 
| 61 |  | mptexg 7241 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) ∈ V) | 
| 62 | 1, 61 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) ∈ V) | 
| 63 | 48, 58, 60, 62 | fvmptd3 7039 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐻‘1) = (𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) | 
| 64 | 63 | feq1d 6720 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐻‘1):𝑋⟶(ℝ × ℝ) ↔
(𝑘 ∈ 𝑋 ↦ 〈(𝐴‘𝑘), (𝐵‘𝑘)〉):𝑋⟶(ℝ ×
ℝ))) | 
| 65 | 56, 64 | mpbird 257 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐻‘1):𝑋⟶(ℝ ×
ℝ)) | 
| 66 | 65 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐻‘1):𝑋⟶(ℝ ×
ℝ)) | 
| 67 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | 
| 68 | 66, 67 | fvovco 45198 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd
‘((𝐻‘1)‘𝑘)))) | 
| 69 | 34 | elexd 3504 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈(𝐴‘𝑘), (𝐵‘𝑘)〉 ∈ V) | 
| 70 | 63, 69 | fvmpt2d 7029 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐻‘1)‘𝑘) = 〈(𝐴‘𝑘), (𝐵‘𝑘)〉) | 
| 71 | 70 | fveq2d 6910 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (1st
‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) | 
| 72 |  | fvex 6919 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐴‘𝑘) ∈ V | 
| 73 |  | fvex 6919 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐵‘𝑘) ∈ V | 
| 74 | 72, 73 | op1st 8022 | . . . . . . . . . . . . . . . . . 18
⊢
(1st ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐴‘𝑘) | 
| 75 | 74 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐴‘𝑘)) | 
| 76 | 71, 75 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (𝐴‘𝑘)) | 
| 77 | 70 | fveq2d 6910 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (2nd
‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉)) | 
| 78 | 72, 73 | op2nd 8023 | . . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐵‘𝑘) | 
| 79 | 78 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘〈(𝐴‘𝑘), (𝐵‘𝑘)〉) = (𝐵‘𝑘)) | 
| 80 | 77, 79 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (𝐵‘𝑘)) | 
| 81 | 76, 80 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd
‘((𝐻‘1)‘𝑘))) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 82 | 68, 81 | eqtrd 2777 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 83 | 82 | ixpeq2dva 8952 | . . . . . . . . . . . . 13
⊢ (𝜑 → X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘1))‘𝑘) = X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 84 | 55, 3, 83 | 3eqtr4d 2787 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘1))‘𝑘)) | 
| 85 |  | fveq2 6906 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 1 → (𝐻‘𝑗) = (𝐻‘1)) | 
| 86 | 85 | coeq2d 5873 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → ([,) ∘ (𝐻‘𝑗)) = ([,) ∘ (𝐻‘1))) | 
| 87 | 86 | fveq1d 6908 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (([,) ∘ (𝐻‘𝑗))‘𝑘) = (([,) ∘ (𝐻‘1))‘𝑘)) | 
| 88 | 87 | ixpeq2dv 8953 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 1 → X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘1))‘𝑘)) | 
| 89 | 88 | ssiun2s 5048 | . . . . . . . . . . . . 13
⊢ (1 ∈
ℕ → X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) | 
| 90 | 59, 89 | ax-mp 5 | . . . . . . . . . . . 12
⊢ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) | 
| 91 | 84, 90 | eqsstrdi 4028 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) | 
| 92 | 91 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) | 
| 93 | 82 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 94 | 93 | eqcomd 2743 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) | 
| 95 | 94 | prodeq2dv 15958 | . . . . . . . . . . . 12
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) | 
| 96 | 95 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) | 
| 97 |  | 1red 11262 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) | 
| 98 |  | icossicc 13476 | . . . . . . . . . . . . . . 15
⊢
(0[,)+∞) ⊆ (0[,]+∞) | 
| 99 | 4, 1, 65 | hoiprodcl 46562 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,)+∞)) | 
| 100 | 98, 99 | sselid 3981 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,]+∞)) | 
| 101 | 87 | fveq2d 6910 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 1 → (vol‘(([,)
∘ (𝐻‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) | 
| 102 | 101 | prodeq2ad 45607 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 1 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) | 
| 103 | 97, 100, 102 | sge0snmpt 46398 | . . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘))) | 
| 104 | 103 | eqcomd 2743 | . . . . . . . . . . . 12
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) =
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) | 
| 105 | 104 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) =
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) | 
| 106 |  | nfv 1914 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝜑 ∧ ¬ 𝑋 = ∅) | 
| 107 | 51 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ℕ ∈
V) | 
| 108 |  | snssi 4808 | . . . . . . . . . . . . . 14
⊢ (1 ∈
ℕ → {1} ⊆ ℕ) | 
| 109 | 59, 108 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ {1}
⊆ ℕ | 
| 110 | 109 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → {1} ⊆
ℕ) | 
| 111 |  | nfv 1914 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) | 
| 112 | 1 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → 𝑋 ∈ Fin) | 
| 113 |  | simpl 482 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {1}) → 𝜑) | 
| 114 |  | elsni 4643 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {1} → 𝑗 = 1) | 
| 115 | 114 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {1}) → 𝑗 = 1) | 
| 116 | 65 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝐻‘1):𝑋⟶(ℝ ×
ℝ)) | 
| 117 | 85 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝐻‘𝑗) = (𝐻‘1)) | 
| 118 | 117 | feq1d 6720 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = 1) → ((𝐻‘𝑗):𝑋⟶(ℝ × ℝ) ↔
(𝐻‘1):𝑋⟶(ℝ ×
ℝ))) | 
| 119 | 116, 118 | mpbird 257 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = 1) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) | 
| 120 | 113, 115,
119 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ {1}) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) | 
| 121 | 120 | adantlr 715 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) | 
| 122 | 111, 112,
121 | hoiprodcl 46562 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) ∈ (0[,)+∞)) | 
| 123 | 98, 122 | sselid 3981 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) ∈ (0[,]+∞)) | 
| 124 | 38 | fmpttd 7135 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈0, 0〉):𝑋⟶(ℝ ×
ℝ)) | 
| 125 | 124 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝑘 ∈ 𝑋 ↦ 〈0, 0〉):𝑋⟶(ℝ ×
ℝ)) | 
| 126 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → 𝜑) | 
| 127 |  | eldifi 4131 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ 𝑗 ∈
ℕ) | 
| 128 | 127 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → 𝑗 ∈
ℕ) | 
| 129 | 48 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0,
0〉)))) | 
| 130 | 47 | elexd 3504 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) ∈
V) | 
| 131 | 129, 130 | fvmpt2d 7029 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐻‘𝑗) = (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) | 
| 132 | 126, 128,
131 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝐻‘𝑗) = (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) | 
| 133 |  | eldifsni 4790 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ 𝑗 ≠
1) | 
| 134 | 133 | neneqd 2945 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ ¬ 𝑗 =
1) | 
| 135 | 134 | iffalsed 4536 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ if(𝑗 = 1,
〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉) = 〈0,
0〉) | 
| 136 | 135 | mpteq2dv 5244 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (ℕ ∖ {1})
→ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) = (𝑘 ∈ 𝑋 ↦ 〈0, 0〉)) | 
| 137 | 136 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) = (𝑘 ∈ 𝑋 ↦ 〈0, 0〉)) | 
| 138 | 132, 137 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝐻‘𝑗) = (𝑘 ∈ 𝑋 ↦ 〈0, 0〉)) | 
| 139 | 138 | feq1d 6720 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → ((𝐻‘𝑗):𝑋⟶(ℝ × ℝ) ↔
(𝑘 ∈ 𝑋 ↦ 〈0, 0〉):𝑋⟶(ℝ ×
ℝ))) | 
| 140 | 125, 139 | mpbird 257 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) | 
| 141 | 140 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (𝐻‘𝑗):𝑋⟶(ℝ ×
ℝ)) | 
| 142 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | 
| 143 | 141, 142 | fvovco 45198 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘𝑗))‘𝑘) = ((1st ‘((𝐻‘𝑗)‘𝑘))[,)(2nd ‘((𝐻‘𝑗)‘𝑘)))) | 
| 144 | 37 | elexi 3503 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ 〈0,
0〉 ∈ V | 
| 145 | 144 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → 〈0, 0〉 ∈
V) | 
| 146 | 138, 145 | fvmpt2d 7029 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → ((𝐻‘𝑗)‘𝑘) = 〈0, 0〉) | 
| 147 | 146 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘𝑗)‘𝑘)) = (1st ‘〈0,
0〉)) | 
| 148 | 16 | elexi 3503 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
V | 
| 149 | 148, 148 | op1st 8022 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(1st ‘〈0, 0〉) = 0 | 
| 150 | 149 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (1st ‘〈0,
0〉) = 0) | 
| 151 | 147, 150 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐻‘𝑗)‘𝑘)) = 0) | 
| 152 | 146 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘𝑗)‘𝑘)) = (2nd ‘〈0,
0〉)) | 
| 153 | 148, 148 | op2nd 8023 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(2nd ‘〈0, 0〉) = 0 | 
| 154 | 153 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (2nd ‘〈0,
0〉) = 0) | 
| 155 | 152, 154 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐻‘𝑗)‘𝑘)) = 0) | 
| 156 | 151, 155 | oveq12d 7449 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐻‘𝑗)‘𝑘))[,)(2nd ‘((𝐻‘𝑗)‘𝑘))) = (0[,)0)) | 
| 157 |  | 0le0 12367 | . . . . . . . . . . . . . . . . . . . 20
⊢ 0 ≤
0 | 
| 158 |  | ico0 13433 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ* ∧ 0 ∈ ℝ*) → ((0[,)0)
= ∅ ↔ 0 ≤ 0)) | 
| 159 | 16, 16, 158 | mp2an 692 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((0[,)0)
= ∅ ↔ 0 ≤ 0) | 
| 160 | 157, 159 | mpbir 231 | . . . . . . . . . . . . . . . . . . 19
⊢ (0[,)0) =
∅ | 
| 161 | 160 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (0[,)0) = ∅) | 
| 162 | 143, 156,
161 | 3eqtrd 2781 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐻‘𝑗))‘𝑘) = ∅) | 
| 163 | 162 | fveq2d 6910 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = (vol‘∅)) | 
| 164 |  | vol0 45974 | . . . . . . . . . . . . . . . . 17
⊢
(vol‘∅) = 0 | 
| 165 | 164 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (vol‘∅) =
0) | 
| 166 | 163, 165 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = 0) | 
| 167 | 166 | prodeq2dv 15958 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 0) | 
| 168 | 167 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 0) | 
| 169 |  | 0cnd 11254 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℂ) | 
| 170 |  | fprodconst 16014 | . . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ Fin ∧ 0 ∈
ℂ) → ∏𝑘
∈ 𝑋 0 =
(0↑(♯‘𝑋))) | 
| 171 | 1, 169, 170 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) | 
| 172 | 171 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 0 =
(0↑(♯‘𝑋))) | 
| 173 |  | neqne 2948 | . . . . . . . . . . . . . . . . 17
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) | 
| 174 | 173 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) | 
| 175 | 1 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) | 
| 176 |  | hashnncl 14405 | . . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) | 
| 177 | 175, 176 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | 
| 178 | 174, 177 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (♯‘𝑋) ∈
ℕ) | 
| 179 |  | 0exp 14138 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝑋)
∈ ℕ → (0↑(♯‘𝑋)) = 0) | 
| 180 | 178, 179 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) →
(0↑(♯‘𝑋))
= 0) | 
| 181 | 180 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
(0↑(♯‘𝑋))
= 0) | 
| 182 | 168, 172,
181 | 3eqtrd 2781 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) →
∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)) = 0) | 
| 183 | 106, 107,
110, 123, 182 | sge0ss 46427 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) →
(Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) | 
| 184 | 96, 105, 183 | 3eqtrd 2781 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) | 
| 185 | 92, 184 | jca 511 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))))) | 
| 186 |  | nfcv 2905 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑖 | 
| 187 |  | nfcv 2905 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘ℕ | 
| 188 |  | nfmpt1 5250 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉)) | 
| 189 | 187, 188 | nfmpt 5249 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ if(𝑗 = 1, 〈(𝐴‘𝑘), (𝐵‘𝑘)〉, 〈0, 0〉))) | 
| 190 | 48, 189 | nfcxfr 2903 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝐻 | 
| 191 | 186, 190 | nfeq 2919 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑖 = 𝐻 | 
| 192 |  | fveq1 6905 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐻 → (𝑖‘𝑗) = (𝐻‘𝑗)) | 
| 193 | 192 | coeq2d 5873 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐻 → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝐻‘𝑗))) | 
| 194 | 193 | fveq1d 6908 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐻 → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐻‘𝑗))‘𝑘)) | 
| 195 | 194 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐻 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐻‘𝑗))‘𝑘)) | 
| 196 | 191, 195 | ixpeq2d 45073 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝐻 → X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) | 
| 197 | 196 | iuneq2d 5022 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝐻 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘)) | 
| 198 | 197 | sseq2d 4016 | . . . . . . . . . . 11
⊢ (𝑖 = 𝐻 → (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ 𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘))) | 
| 199 | 194 | fveq2d 6910 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐻 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))) | 
| 200 | 199 | a1d 25 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐻 → (𝑘 ∈ 𝑋 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) | 
| 201 | 191, 200 | ralrimi 3257 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐻 → ∀𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))) | 
| 202 | 201 | prodeq2d 15957 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐻 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))) | 
| 203 | 202 | mpteq2dv 5244 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝐻 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))) | 
| 204 | 203 | fveq2d 6910 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝐻 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))) | 
| 205 | 204 | eqeq2d 2748 | . . . . . . . . . . 11
⊢ (𝑖 = 𝐻 → (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))))) | 
| 206 | 198, 205 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑖 = 𝐻 → ((𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘))))))) | 
| 207 | 206 | rspcev 3622 | . . . . . . . . 9
⊢ ((𝐻 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐻‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐻‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) | 
| 208 | 54, 185, 207 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) | 
| 209 | 32, 208 | jca 511 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) | 
| 210 |  | eqeq1 2741 | . . . . . . . . . 10
⊢ (𝑧 = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) | 
| 211 | 210 | anbi2d 630 | . . . . . . . . 9
⊢ (𝑧 = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) → ((𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) | 
| 212 | 211 | rexbidv 3179 | . . . . . . . 8
⊢ (𝑧 = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) → (∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) | 
| 213 | 212 | elrab 3692 | . . . . . . 7
⊢
(∏𝑘 ∈
𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ↔ (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) | 
| 214 | 209, 213 | sylibr 234 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) | 
| 215 | 12 | eqcomi 2746 | . . . . . . 7
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = 𝑀 | 
| 216 | 215 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = 𝑀) | 
| 217 | 214, 216 | eleqtrd 2843 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ 𝑀) | 
| 218 |  | infxrlb 13376 | . . . . 5
⊢ ((𝑀 ⊆ ℝ*
∧ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 219 | 29, 217, 218 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → inf(𝑀, ℝ*, < ) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 220 | 26, 219 | eqbrtrd 5165 | . . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 221 | 24, 220 | pm2.61dan 813 | . 2
⊢ (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤
∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 222 | 13, 221 | eqbrtrd 5165 | 1
⊢ (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |