Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoilem1 Structured version   Visualization version   GIF version

Theorem ovnhoilem1 43768
Description: The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. First part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoilem1.x (𝜑𝑋 ∈ Fin)
ovnhoilem1.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoilem1.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoilem1.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoilem1.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnhoilem1.h 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
Assertion
Ref Expression
ovnhoilem1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑧   𝐵,𝑖,𝑗,𝑧   𝑖,𝐻,𝑗   𝑖,𝐼,𝑧   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐴(𝑘)   𝐵(𝑘)   𝐻(𝑧,𝑘)   𝐼(𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnhoilem1
StepHypRef Expression
1 ovnhoilem1.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoilem1.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 1922 . . . . 5 𝑘𝜑
5 ovnhoilem1.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelrnda 6893 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoilem1.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelrnda 6893 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 10866 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 43745 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑m 𝑋))
113, 10eqsstrd 3929 . . 3 (𝜑𝐼 ⊆ (ℝ ↑m 𝑋))
12 ovnhoilem1.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
131, 11, 12ovnval2 43712 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
14 iftrue 4435 . . . . 5 (𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
1514adantl 485 . . . 4 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = 0)
16 0xr 10863 . . . . . . 7 0 ∈ ℝ*
1716a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
18 pnfxr 10870 . . . . . . 7 +∞ ∈ ℝ*
1918a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
204, 1, 6, 8hoiprodcl3 43747 . . . . . 6 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞))
21 icogelb 12969 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞)) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2217, 19, 20, 21syl3anc 1373 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2322adantr 484 . . . 4 ((𝜑𝑋 = ∅) → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2415, 23eqbrtrd 5065 . . 3 ((𝜑𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
25 iffalse 4438 . . . . 5 𝑋 = ∅ → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
2625adantl 485 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
27 ssrab2 3983 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
2812, 27eqsstri 3925 . . . . . 6 𝑀 ⊆ ℝ*
2928a1i 11 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑀 ⊆ ℝ*)
30 icossxr 13003 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ*
3130, 20sseldi 3889 . . . . . . . . 9 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
3231adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
33 opelxpi 5577 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
346, 8, 33syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ (ℝ × ℝ))
35 0re 10818 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
36 opelxpi 5577 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3735, 35, 36mp2an 692 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
3837a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
3934, 38ifcld 4475 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) ∈ (ℝ × ℝ))
4039fmpttd 6921 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ))
41 reex 10803 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
4241, 41xpex 7527 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ∈ V
431, 42jctil 523 . . . . . . . . . . . . . . 15 (𝜑 → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin))
44 elmapg 8510 . . . . . . . . . . . . . . 15 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4543, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)):𝑋⟶(ℝ × ℝ)))
4640, 45mpbird 260 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋))
4746adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ ((ℝ × ℝ) ↑m 𝑋))
48 ovnhoilem1.h . . . . . . . . . . . 12 𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
4947, 48fmptd 6920 . . . . . . . . . . 11 (𝜑𝐻:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
50 ovex 7235 . . . . . . . . . . . 12 ((ℝ × ℝ) ↑m 𝑋) ∈ V
51 nnex 11819 . . . . . . . . . . . 12 ℕ ∈ V
5250, 51elmap 8541 . . . . . . . . . . 11 (𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐻:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5349, 52sylibr 237 . . . . . . . . . 10 (𝜑𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
5453adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
55 eqidd 2735 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
5634fmpttd 6921 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ))
57 iftrue 4435 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 1 → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
5857mpteq2dv 5140 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 1 → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
59 1nn 11824 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℕ
6059a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
61 mptexg 7026 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
621, 61syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩) ∈ V)
6348, 58, 60, 62fvmptd3 6830 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐻‘1) = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩))
6463feq1d 6519 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐻‘1):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩):𝑋⟶(ℝ × ℝ)))
6556, 64mpbird 260 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻‘1):𝑋⟶(ℝ × ℝ))
6665adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
67 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → 𝑘𝑋)
6866, 67fvovco 42357 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))))
6934elexd 3421 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨(𝐴𝑘), (𝐵𝑘)⟩ ∈ V)
7063, 69fvmpt2d 6820 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐻‘1)‘𝑘) = ⟨(𝐴𝑘), (𝐵𝑘)⟩)
7170fveq2d 6710 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
72 fvex 6719 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑘) ∈ V
73 fvex 6719 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑘) ∈ V
7472, 73op1st 7758 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘)
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐴𝑘))
7671, 75eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝐻‘1)‘𝑘)) = (𝐴𝑘))
7770fveq2d 6710 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩))
7872, 73op2nd 7759 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘)
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨(𝐴𝑘), (𝐵𝑘)⟩) = (𝐵𝑘))
8077, 79eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝐻‘1)‘𝑘)) = (𝐵𝑘))
8176, 80oveq12d 7220 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝐻‘1)‘𝑘))[,)(2nd ‘((𝐻‘1)‘𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
8268, 81eqtrd 2774 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (([,) ∘ (𝐻‘1))‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
8382ixpeq2dva 8582 . . . . . . . . . . . . 13 (𝜑X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
8455, 3, 833eqtr4d 2784 . . . . . . . . . . . 12 (𝜑𝐼 = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
85 fveq2 6706 . . . . . . . . . . . . . . . . 17 (𝑗 = 1 → (𝐻𝑗) = (𝐻‘1))
8685coeq2d 5720 . . . . . . . . . . . . . . . 16 (𝑗 = 1 → ([,) ∘ (𝐻𝑗)) = ([,) ∘ (𝐻‘1)))
8786fveq1d 6708 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (([,) ∘ (𝐻𝑗))‘𝑘) = (([,) ∘ (𝐻‘1))‘𝑘))
8887ixpeq2dv 8583 . . . . . . . . . . . . . 14 (𝑗 = 1 → X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘))
8988ssiun2s 4947 . . . . . . . . . . . . 13 (1 ∈ ℕ → X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9059, 89ax-mp 5 . . . . . . . . . . . 12 X𝑘𝑋 (([,) ∘ (𝐻‘1))‘𝑘) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)
9184, 90eqsstrdi 3945 . . . . . . . . . . 11 (𝜑𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9291adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
9382fveq2d 6710 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9493eqcomd 2740 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
9594prodeq2dv 15466 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
9695adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
97 1red 10817 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
98 icossicc 13007 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
994, 1, 65hoiprodcl 43714 . . . . . . . . . . . . . . 15 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,)+∞))
10098, 99sseldi 3889 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) ∈ (0[,]+∞))
10187fveq2d 6710 . . . . . . . . . . . . . . 15 (𝑗 = 1 → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
102101prodeq2ad 42762 . . . . . . . . . . . . . 14 (𝑗 = 1 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
10397, 100, 102sge0snmpt 43550 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)))
104103eqcomd 2740 . . . . . . . . . . . 12 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
105104adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻‘1))‘𝑘)) = (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
106 nfv 1922 . . . . . . . . . . . 12 𝑗(𝜑 ∧ ¬ 𝑋 = ∅)
10751a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → ℕ ∈ V)
108 snssi 4711 . . . . . . . . . . . . . 14 (1 ∈ ℕ → {1} ⊆ ℕ)
10959, 108ax-mp 5 . . . . . . . . . . . . 13 {1} ⊆ ℕ
110109a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑋 = ∅) → {1} ⊆ ℕ)
111 nfv 1922 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1})
1121ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → 𝑋 ∈ Fin)
113 simpl 486 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝜑)
114 elsni 4548 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {1} → 𝑗 = 1)
115114adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ {1}) → 𝑗 = 1)
11665adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → (𝐻‘1):𝑋⟶(ℝ × ℝ))
11785adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 = 1) → (𝐻𝑗) = (𝐻‘1))
118117feq1d 6519 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 1) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝐻‘1):𝑋⟶(ℝ × ℝ)))
119116, 118mpbird 260 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = 1) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
120113, 115, 119syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
121120adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
122111, 112, 121hoiprodcl 43714 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,)+∞))
12398, 122sseldi 3889 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ {1}) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) ∈ (0[,]+∞))
12438fmpttd 6921 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
125124adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ))
126 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝜑)
127 eldifi 4031 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ∈ ℕ)
128127adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → 𝑗 ∈ ℕ)
12948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))))
13047elexd 3421 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) ∈ V)
131129, 130fvmpt2d 6820 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
132126, 128, 131syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
133 eldifsni 4693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (ℕ ∖ {1}) → 𝑗 ≠ 1)
134133neneqd 2940 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ (ℕ ∖ {1}) → ¬ 𝑗 = 1)
135134iffalsed 4440 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (ℕ ∖ {1}) → if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
136135mpteq2dv 5140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℕ ∖ {1}) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
137136adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ ⟨0, 0⟩))
138132, 137eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗) = (𝑘𝑋 ↦ ⟨0, 0⟩))
139138feq1d 6519 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ((𝐻𝑗):𝑋⟶(ℝ × ℝ) ↔ (𝑘𝑋 ↦ ⟨0, 0⟩):𝑋⟶(ℝ × ℝ)))
140125, 139mpbird 260 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
141140adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (𝐻𝑗):𝑋⟶(ℝ × ℝ))
142 simpr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → 𝑘𝑋)
143141, 142fvovco 42357 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))))
14437elexi 3420 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨0, 0⟩ ∈ V
145144a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ⟨0, 0⟩ ∈ V)
146138, 145fvmpt2d 6820 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((𝐻𝑗)‘𝑘) = ⟨0, 0⟩)
147146fveq2d 6710 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = (1st ‘⟨0, 0⟩))
14816elexi 3420 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
149148, 148op1st 7758 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨0, 0⟩) = 0
150149a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘⟨0, 0⟩) = 0)
151147, 150eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (1st ‘((𝐻𝑗)‘𝑘)) = 0)
152146fveq2d 6710 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = (2nd ‘⟨0, 0⟩))
153148, 148op2nd 7759 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨0, 0⟩) = 0
154153a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘⟨0, 0⟩) = 0)
155152, 154eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (2nd ‘((𝐻𝑗)‘𝑘)) = 0)
156151, 155oveq12d 7220 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → ((1st ‘((𝐻𝑗)‘𝑘))[,)(2nd ‘((𝐻𝑗)‘𝑘))) = (0[,)0))
157 0le0 11914 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 0
158 ico0 12964 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((0[,)0) = ∅ ↔ 0 ≤ 0))
15916, 16, 158mp2an 692 . . . . . . . . . . . . . . . . . . . 20 ((0[,)0) = ∅ ↔ 0 ≤ 0)
160157, 159mpbir 234 . . . . . . . . . . . . . . . . . . 19 (0[,)0) = ∅
161160a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (0[,)0) = ∅)
162143, 156, 1613eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (([,) ∘ (𝐻𝑗))‘𝑘) = ∅)
163162fveq2d 6710 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = (vol‘∅))
164 vol0 43129 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
165164a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘∅) = 0)
166163, 165eqtrd 2774 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℕ ∖ {1})) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
167166prodeq2dv 15466 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
168167adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = ∏𝑘𝑋 0)
169 0cnd 10809 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
170 fprodconst 15521 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
1711, 169, 170syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
172171ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
173 neqne 2943 . . . . . . . . . . . . . . . . 17 𝑋 = ∅ → 𝑋 ≠ ∅)
174173adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
1751adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
176 hashnncl 13916 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
177175, 176syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
178174, 177mpbird 260 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑋 = ∅) → (♯‘𝑋) ∈ ℕ)
179 0exp 13653 . . . . . . . . . . . . . . 15 ((♯‘𝑋) ∈ ℕ → (0↑(♯‘𝑋)) = 0)
180178, 179syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑋 = ∅) → (0↑(♯‘𝑋)) = 0)
181180adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → (0↑(♯‘𝑋)) = 0)
182168, 172, 1813eqtrd 2778 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑗 ∈ (ℕ ∖ {1})) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)) = 0)
183106, 107, 110, 123, 182sge0ss 43579 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑗 ∈ {1} ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
18496, 105, 1833eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
18592, 184jca 515 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
186 nfcv 2900 . . . . . . . . . . . . . . 15 𝑘𝑖
187 nfcv 2900 . . . . . . . . . . . . . . . . 17 𝑘
188 nfmpt1 5142 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
189187, 188nfmpt 5141 . . . . . . . . . . . . . . . 16 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
19048, 189nfcxfr 2898 . . . . . . . . . . . . . . 15 𝑘𝐻
191186, 190nfeq 2913 . . . . . . . . . . . . . 14 𝑘 𝑖 = 𝐻
192 fveq1 6705 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (𝑖𝑗) = (𝐻𝑗))
193192coeq2d 5720 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐻𝑗)))
194193fveq1d 6708 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
195194adantr 484 . . . . . . . . . . . . . 14 ((𝑖 = 𝐻𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐻𝑗))‘𝑘))
196191, 195ixpeq2d 42241 . . . . . . . . . . . . 13 (𝑖 = 𝐻X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
197196iuneq2d 4923 . . . . . . . . . . . 12 (𝑖 = 𝐻 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘))
198197sseq2d 3923 . . . . . . . . . . 11 (𝑖 = 𝐻 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘)))
199194fveq2d 6710 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐻 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
200199a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐻 → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
201191, 200ralrimi 3130 . . . . . . . . . . . . . . 15 (𝑖 = 𝐻 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
202201prodeq2d 15465 . . . . . . . . . . . . . 14 (𝑖 = 𝐻 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))
203202mpteq2dv 5140 . . . . . . . . . . . . 13 (𝑖 = 𝐻 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))
204203fveq2d 6710 . . . . . . . . . . . 12 (𝑖 = 𝐻 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))
205204eqeq2d 2745 . . . . . . . . . . 11 (𝑖 = 𝐻 → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘))))))
206198, 205anbi12d 634 . . . . . . . . . 10 (𝑖 = 𝐻 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))))
207206rspcev 3530 . . . . . . . . 9 ((𝐻 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐻𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐻𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
20854, 185, 207syl2anc 587 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
20932, 208jca 515 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋 = ∅) → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
210 eqeq1 2738 . . . . . . . . . 10 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
211210anbi2d 632 . . . . . . . . 9 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
212211rexbidv 3209 . . . . . . . 8 (𝑧 = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
213212elrab 3595 . . . . . . 7 (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
214209, 213sylibr 237 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
21512eqcomi 2743 . . . . . . 7 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀
216215a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = 𝑀)
217214, 216eleqtrd 2836 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀)
218 infxrlb 12907 . . . . 5 ((𝑀 ⊆ ℝ* ∧ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
21929, 217, 218syl2anc 587 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → inf(𝑀, ℝ*, < ) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22026, 219eqbrtrd 5065 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22124, 220pm2.61dan 813 . 2 (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
22213, 221eqbrtrd 5065 1 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wrex 3055  {crab 3058  Vcvv 3401  cdif 3854  wss 3857  c0 4227  ifcif 4429  {csn 4531  cop 4537   ciun 4894   class class class wbr 5043  cmpt 5124   × cxp 5538  ccom 5544  wf 6365  cfv 6369  (class class class)co 7202  1st c1st 7748  2nd c2nd 7749  m cmap 8497  Xcixp 8567  Fincfn 8615  infcinf 9046  cc 10710  cr 10711  0cc0 10712  1c1 10713  +∞cpnf 10847  *cxr 10849   < clt 10850  cle 10851  cn 11813  [,)cico 12920  [,]cicc 12921  cexp 13618  chash 13879  cprod 15448  volcvol 24332  Σ^csumge0 43529  voln*covoln 43703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-rlim 15033  df-sum 15233  df-prod 15449  df-rest 16899  df-topgen 16920  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-top 21763  df-topon 21780  df-bases 21815  df-cmp 22256  df-ovol 24333  df-vol 24334  df-sumge0 43530  df-ovoln 43704
This theorem is referenced by:  ovnhoi  43770
  Copyright terms: Public domain W3C validator