Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlecvr Structured version   Visualization version   GIF version

Theorem ovnlecvr 46084
Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with 𝑋 the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnlecvr.x (𝜑𝑋 ∈ Fin)
ovnlecvr.n0 (𝜑𝑋 ≠ ∅)
ovnlecvr.l 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
ovnlecvr.i (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
ovnlecvr.ss (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
Assertion
Ref Expression
ovnlecvr (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
Distinct variable groups:   𝐴,𝑖   𝑖,𝐼,𝑗,𝑘   𝑖,𝐿   𝑖,𝑋,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐿(𝑗,𝑘)

Proof of Theorem ovnlecvr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ovnlecvr.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnlecvr.n0 . . 3 (𝜑𝑋 ≠ ∅)
3 ovnlecvr.ss . . . 4 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
4 ovnlecvr.i . . . . . . . . 9 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
54ffvelcdmda 7093 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
6 elmapi 8868 . . . . . . . 8 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
75, 6syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
87hoissrrn 46075 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
98ralrimiva 3135 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
10 iunss 5049 . . . . 5 ( 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
119, 10sylibr 233 . . . 4 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋))
123, 11sstrd 3987 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
13 eqid 2725 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
141, 2, 12, 13ovnn0val 46077 . 2 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
15 ssrab2 4073 . . . 4 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
1615a1i 11 . . 3 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*)
17 nnex 12251 . . . . . . 7 ℕ ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
19 icossicc 13448 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
20 nfv 1909 . . . . . . . . 9 𝑘(𝜑𝑗 ∈ ℕ)
211adantr 479 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
22 ovnlecvr.l . . . . . . . . 9 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
2320, 21, 22, 7hoiprodcl2 46081 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) ∈ (0[,)+∞))
2419, 23sselid 3974 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) ∈ (0[,]+∞))
25 eqid 2725 . . . . . . 7 (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))
2624, 25fmptd 7123 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))):ℕ⟶(0[,]+∞))
2718, 26sge0xrcl 45911 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ ℝ*)
28 ovex 7452 . . . . . . . . 9 ((ℝ × ℝ) ↑m 𝑋) ∈ V
2928, 17pm3.2i 469 . . . . . . . 8 (((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V)
30 elmapg 8858 . . . . . . . 8 ((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3129, 30ax-mp 5 . . . . . . 7 (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
324, 31sylibr 233 . . . . . 6 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
33 coeq2 5861 . . . . . . . . . . . . 13 (𝑖 = (𝐼𝑗) → ([,) ∘ 𝑖) = ([,) ∘ (𝐼𝑗)))
3433fveq1d 6898 . . . . . . . . . . . 12 (𝑖 = (𝐼𝑗) → (([,) ∘ 𝑖)‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
3534fveq2d 6900 . . . . . . . . . . 11 (𝑖 = (𝐼𝑗) → (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
3635prodeq2ad 45118 . . . . . . . . . 10 (𝑖 = (𝐼𝑗) → ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
37 prodex 15887 . . . . . . . . . . 11 𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ V
3837a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ V)
3922, 36, 5, 38fvmptd3 7027 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
4039mpteq2dva 5249 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
4140fveq2d 6900 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
423, 41jca 510 . . . . . 6 (𝜑 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
43 nfv 1909 . . . . . . . . . . 11 𝑘 𝑖 = 𝐼
44 fveq1 6895 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
4544coeq2d 5865 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
4645fveq1d 6898 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
4746adantr 479 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
4843, 47ixpeq2d 44574 . . . . . . . . . 10 (𝑖 = 𝐼X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
4948iuneq2d 5026 . . . . . . . . 9 (𝑖 = 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
5049sseq2d 4009 . . . . . . . 8 (𝑖 = 𝐼 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
5146fveq2d 6900 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
5251prodeq2ad 45118 . . . . . . . . . . 11 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
5352mpteq2dv 5251 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
5453fveq2d 6900 . . . . . . . . 9 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
5554eqeq2d 2736 . . . . . . . 8 (𝑖 = 𝐼 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
5650, 55anbi12d 630 . . . . . . 7 (𝑖 = 𝐼 → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))))
5756rspcev 3606 . . . . . 6 ((𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
5832, 42, 57syl2anc 582 . . . . 5 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
5927, 58jca 510 . . . 4 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
60 eqeq1 2729 . . . . . . 7 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
6160anbi2d 628 . . . . . 6 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6261rexbidv 3168 . . . . 5 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6362elrab 3679 . . . 4 ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6459, 63sylibr 233 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
65 infxrlb 13348 . . 3 (({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ* ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
6616, 64, 65syl2anc 582 . 2 (𝜑 → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
6714, 66eqbrtrd 5171 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  wss 3944  c0 4322   ciun 4997   class class class wbr 5149  cmpt 5232   × cxp 5676  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  Xcixp 8916  Fincfn 8964  infcinf 9466  cr 11139  0cc0 11140  +∞cpnf 11277  *cxr 11279   < clt 11280  cle 11281  cn 12245  [,)cico 13361  [,]cicc 13362  cprod 15885  volcvol 25436  Σ^csumge0 45888  voln*covoln 46062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-sum 15669  df-prod 15886  df-rest 17407  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22840  df-topon 22857  df-bases 22893  df-cmp 23335  df-ovol 25437  df-vol 25438  df-sumge0 45889  df-ovoln 46063
This theorem is referenced by:  ovnsubaddlem1  46096
  Copyright terms: Public domain W3C validator