Step | Hyp | Ref
| Expression |
1 | | ovnlecvr.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | | ovnlecvr.n0 |
. . 3
⊢ (𝜑 → 𝑋 ≠ ∅) |
3 | | ovnlecvr.ss |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
4 | | ovnlecvr.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
5 | 4 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
6 | | elmapi 8595 |
. . . . . . . 8
⊢ ((𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)
→ (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
8 | 7 | hoissrrn 43977 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
9 | 8 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
10 | | iunss 4971 |
. . . . 5
⊢ (∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
11 | 9, 10 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
12 | 3, 11 | sstrd 3927 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
13 | | eqid 2738 |
. . 3
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
14 | 1, 2, 12, 13 | ovnn0val 43979 |
. 2
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)) |
15 | | ssrab2 4009 |
. . . 4
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ* |
16 | 15 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ*) |
17 | | nnex 11909 |
. . . . . . 7
⊢ ℕ
∈ V |
18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ ∈
V) |
19 | | icossicc 13097 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
20 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ ℕ) |
21 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
22 | | ovnlecvr.l |
. . . . . . . . 9
⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑘))) |
23 | 20, 21, 22, 7 | hoiprodcl2 43983 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘(𝐼‘𝑗)) ∈ (0[,)+∞)) |
24 | 19, 23 | sselid 3915 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘(𝐼‘𝑗)) ∈ (0[,]+∞)) |
25 | | eqid 2738 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))) |
26 | 24, 25 | fmptd 6970 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))):ℕ⟶(0[,]+∞)) |
27 | 18, 26 | sge0xrcl 43813 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ∈
ℝ*) |
28 | | ovex 7288 |
. . . . . . . . 9
⊢ ((ℝ
× ℝ) ↑m 𝑋) ∈ V |
29 | 28, 17 | pm3.2i 470 |
. . . . . . . 8
⊢
(((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈
V) |
30 | | elmapg 8586 |
. . . . . . . 8
⊢
((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) →
(𝐼 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ
× ℝ) ↑m 𝑋))) |
31 | 29, 30 | ax-mp 5 |
. . . . . . 7
⊢ (𝐼 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ
× ℝ) ↑m 𝑋)) |
32 | 4, 31 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
33 | | coeq2 5756 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝐼‘𝑗) → ([,) ∘ 𝑖) = ([,) ∘ (𝐼‘𝑗))) |
34 | 33 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼‘𝑗) → (([,) ∘ 𝑖)‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
35 | 34 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘𝑗) → (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
36 | 35 | prodeq2ad 43023 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘𝑗) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
37 | | prodex 15545 |
. . . . . . . . . . 11
⊢
∏𝑘 ∈
𝑋 (vol‘(([,) ∘
(𝐼‘𝑗))‘𝑘)) ∈ V |
38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) ∈ V) |
39 | 22, 36, 5, 38 | fvmptd3 6880 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘(𝐼‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
40 | 39 | mpteq2dva 5170 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
41 | 40 | fveq2d 6760 |
. . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
42 | 3, 41 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) |
43 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑖 = 𝐼 |
44 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐼 → (𝑖‘𝑗) = (𝐼‘𝑗)) |
45 | 44 | coeq2d 5760 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝐼‘𝑗))) |
46 | 45 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
47 | 46 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
48 | 43, 47 | ixpeq2d 42505 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
49 | 48 | iuneq2d 4950 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
50 | 49 | sseq2d 3949 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
51 | 46 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
52 | 51 | prodeq2ad 43023 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
53 | 52 | mpteq2dv 5172 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
54 | 53 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
55 | 54 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) |
56 | 50, 55 | anbi12d 630 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → ((𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))))) |
57 | 56 | rspcev 3552 |
. . . . . 6
⊢ ((𝐼 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
58 | 32, 42, 57 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
59 | 27, 58 | jca 511 |
. . . 4
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
60 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) → (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
61 | 60 | anbi2d 628 |
. . . . . 6
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) → ((𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
62 | 61 | rexbidv 3225 |
. . . . 5
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
63 | 62 | elrab 3617 |
. . . 4
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ↔
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
64 | 59, 63 | sylibr 233 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
65 | | infxrlb 12997 |
. . 3
⊢ (({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ ℝ* ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) |
66 | 16, 64, 65 | syl2anc 583 |
. 2
⊢ (𝜑 → inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) |
67 | 14, 66 | eqbrtrd 5092 |
1
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) |