Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlecvr2 Structured version   Visualization version   GIF version

Theorem ovnlecvr2 41490
Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovnlecvr2.x (𝜑𝑋 ∈ Fin)
ovnlecvr2.c (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))
ovnlecvr2.d (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))
ovnlecvr2.s (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
ovnlecvr2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnlecvr2 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘,𝑎,𝑏)   𝐶(𝑥,𝑗)   𝐷(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem ovnlecvr2
Dummy variables 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6379 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6381 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
32adantl 473 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
4 ovnlecvr2.s . . . . . . 7 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
54adantr 472 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
6 1nn 11292 . . . . . . . . . . 11 1 ∈ ℕ
7 ne0i 4087 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
86, 7ax-mp 5 . . . . . . . . . 10 ℕ ≠ ∅
98a1i 11 . . . . . . . . 9 (𝜑 → ℕ ≠ ∅)
10 iunconst 4687 . . . . . . . . 9 (ℕ ≠ ∅ → 𝑗 ∈ ℕ {∅} = {∅})
119, 10syl 17 . . . . . . . 8 (𝜑 𝑗 ∈ ℕ {∅} = {∅})
1211adantr 472 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ {∅} = {∅})
13 ixpeq1 8128 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
14 ixp0x 8145 . . . . . . . . . . . 12 X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅}
1514a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1613, 15eqtrd 2799 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1716adantr 472 . . . . . . . . 9 ((𝑋 = ∅ ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1817iuneq2dv 4700 . . . . . . . 8 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
1918adantl 473 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
20 reex 10284 . . . . . . . . 9 ℝ ∈ V
21 mapdm0 8079 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
2220, 21ax-mp 5 . . . . . . . 8 (ℝ ↑𝑚 ∅) = {∅}
2322a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 ∅) = {∅})
2412, 19, 233eqtr4d 2809 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (ℝ ↑𝑚 ∅))
255, 24sseqtrd 3803 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑𝑚 ∅))
2625ovn0val 41430 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0)
273, 26eqtrd 2799 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0)
28 nfv 2009 . . . . 5 𝑗𝜑
29 nnex 11286 . . . . . 6 ℕ ∈ V
3029a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
31 icossicc 12470 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
32 ovnlecvr2.l . . . . . . 7 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
33 ovnlecvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
3433adantr 472 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
35 ovnlecvr2.c . . . . . . . . 9 (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))
3635ffvelrnda 6553 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑𝑚 𝑋))
37 elmapi 8086 . . . . . . . 8 ((𝐶𝑗) ∈ (ℝ ↑𝑚 𝑋) → (𝐶𝑗):𝑋⟶ℝ)
3836, 37syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
39 ovnlecvr2.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))
4039ffvelrnda 6553 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑𝑚 𝑋))
41 elmapi 8086 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑𝑚 𝑋) → (𝐷𝑗):𝑋⟶ℝ)
4240, 41syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
4332, 34, 38, 42hoidmvcl 41462 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
4431, 43sseldi 3761 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
4528, 30, 44sge0ge0mpt 41318 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4645adantr 472 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4727, 46eqbrtrd 4833 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
48 simpl 474 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑)
49 neqne 2945 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
5049adantl 473 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
5133adantr 472 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
52 simpr 477 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
5338ffvelrnda 6553 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
5442ffvelrnda 6553 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ)
5554rexrd 10347 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
56 icossre 12463 . . . . . . . . . . . . 13 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ*) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5753, 55, 56syl2anc 579 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5857ralrimiva 3113 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
59 ss2ixp 8130 . . . . . . . . . . 11 (∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6058, 59syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6120a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
62 ixpconstg 8126 . . . . . . . . . . . 12 ((𝑋 ∈ Fin ∧ ℝ ∈ V) → X𝑘𝑋 ℝ = (ℝ ↑𝑚 𝑋))
6333, 61, 62syl2anc 579 . . . . . . . . . . 11 (𝜑X𝑘𝑋 ℝ = (ℝ ↑𝑚 𝑋))
6463adantr 472 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 ℝ = (ℝ ↑𝑚 𝑋))
6560, 64sseqtrd 3803 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
6665ralrimiva 3113 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
67 iunss 4719 . . . . . . . 8 ( 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
6866, 67sylibr 225 . . . . . . 7 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
694, 68sstrd 3773 . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
7069adantr 472 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
71 eqid 2765 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
7251, 52, 70, 71ovnn0val 41431 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
73 ssrab2 3849 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
7473a1i 11 . . . . 5 ((𝜑𝑋 ≠ ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*)
7528, 30, 44sge0xrclmpt 41308 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
7675adantr 472 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
77 opelxpi 5316 . . . . . . . . . . . . . 14 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
7853, 54, 77syl2anc 579 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
7978fmpttd 6579 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
8020, 20xpex 7164 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
8180a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
82 elmapg 8077 . . . . . . . . . . . . 13 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8381, 34, 82syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8479, 83mpbird 248 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
8584fmpttd 6579 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
86 ovexd 6880 . . . . . . . . . . 11 (𝜑 → ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V)
87 elmapg 8077 . . . . . . . . . . 11 ((((ℝ × ℝ) ↑𝑚 𝑋) ∈ V ∧ ℕ ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
8886, 30, 87syl2anc 579 . . . . . . . . . 10 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
8985, 88mpbird 248 . . . . . . . . 9 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
9089adantr 472 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
91 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
92 mptexg 6681 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9333, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9493adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
95 eqid 2765 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9695fvmpt2 6484 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9791, 94, 96syl2anc 579 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9897coeq2d 5455 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)) = ([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)))
9998fveq1d 6381 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
10099adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
10179adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
102 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
103101, 102fvovco 40054 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘) = ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))))
104 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → 𝑘𝑋)
105 opex 5090 . . . . . . . . . . . . . . . . . . . 20 ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V
106105a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V)
107 eqid 2765 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
108107fvmpt2 6484 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑋 ∧ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
109104, 106, 108syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
110109fveq2d 6383 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
111 fvex 6392 . . . . . . . . . . . . . . . . . . 19 ((𝐶𝑗)‘𝑘) ∈ V
112 fvex 6392 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗)‘𝑘) ∈ V
113 op1stg 7382 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)‘𝑘) ∈ V ∧ ((𝐷𝑗)‘𝑘) ∈ V) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
114111, 112, 113mp2an 683 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘)
115114a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
116110, 115eqtrd 2799 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐶𝑗)‘𝑘))
117109fveq2d 6383 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
118111, 112op2nd 7379 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘)
119118a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘))
120117, 119eqtrd 2799 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐷𝑗)‘𝑘))
121116, 120oveq12d 6864 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
122121adantlr 706 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
123100, 103, 1223eqtrrd 2804 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
124123ixpeq2dva 8132 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
125124iuneq2dv 4700 . . . . . . . . . . 11 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
1264, 125sseqtrd 3803 . . . . . . . . . 10 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
127126adantr 472 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
128 eqidd 2766 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
12951adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
13052adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅)
13138adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
13242adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
13332, 129, 130, 131, 132hoidmvn0val 41464 . . . . . . . . . . . 12 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
134133mpteq2dva 4905 . . . . . . . . . . 11 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
135134fveq2d 6383 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
136123eqcomd 2771 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
137136fveq2d 6383 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
138137prodeq2dv 14952 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
139138mpteq2dva 4905 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
140139fveq2d 6383 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
141140adantr 472 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
142128, 135, 1413eqtr4d 2809 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
143127, 142jca 507 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
144 nfcv 2907 . . . . . . . . . . . . 13 𝑗𝑖
145 nfmpt1 4908 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
146144, 145nfeq 2919 . . . . . . . . . . . 12 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
147 nfcv 2907 . . . . . . . . . . . . . . 15 𝑘𝑖
148 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑘
149 nfmpt1 4908 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
150148, 149nfmpt 4907 . . . . . . . . . . . . . . 15 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
151147, 150nfeq 2919 . . . . . . . . . . . . . 14 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
152 fveq1 6378 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))
153152coeq2d 5455 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)))
154153fveq1d 6381 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
155154adantr 472 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
156151, 155ixpeq2d 39914 . . . . . . . . . . . . 13 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
157156adantr 472 . . . . . . . . . . . 12 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
158146, 157iuneq2df 39889 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
159158sseq2d 3795 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
160 nfv 2009 . . . . . . . . . . . . . . . 16 𝑘 𝑗 ∈ ℕ
161151, 160nfan 1998 . . . . . . . . . . . . . . 15 𝑘(𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ)
162154fveq2d 6383 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
163162a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
164163adantr 472 . . . . . . . . . . . . . . 15 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
165161, 164ralrimi 3104 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
166165prodeq2d 14951 . . . . . . . . . . . . 13 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
167146, 166mpteq2da 4904 . . . . . . . . . . . 12 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
168167fveq2d 6383 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
169168eqeq2d 2775 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
170159, 169anbi12d 624 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))))
171170rspcev 3462 . . . . . . . 8 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17290, 143, 171syl2anc 579 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17376, 172jca 507 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
174 eqeq1 2769 . . . . . . . . 9 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
175174anbi2d 622 . . . . . . . 8 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
176175rexbidv 3199 . . . . . . 7 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
177176elrab 3521 . . . . . 6 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
178173, 177sylibr 225 . . . . 5 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
179 infxrlb 12373 . . . . 5 (({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ* ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18074, 178, 179syl2anc 579 . . . 4 ((𝜑𝑋 ≠ ∅) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18172, 180eqbrtrd 4833 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18248, 50, 181syl2anc 579 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18347, 182pm2.61dan 847 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  wss 3734  c0 4081  ifcif 4245  {csn 4336  cop 4342   ciun 4678   class class class wbr 4811  cmpt 4890   × cxp 5277  ccom 5283  wf 6066  cfv 6070  (class class class)co 6846  cmpt2 6848  1st c1st 7368  2nd c2nd 7369  𝑚 cmap 8064  Xcixp 8117  Fincfn 8164  infcinf 8558  cr 10192  0cc0 10193  1c1 10194  +∞cpnf 10329  *cxr 10331   < clt 10332  cle 10333  cn 11279  [,)cico 12386  [,]cicc 12387  cprod 14934  volcvol 23537  Σ^csumge0 41242  voln*covoln 41416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-div 10944  df-nn 11280  df-2 11340  df-3 11341  df-n0 11544  df-z 11630  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12153  df-xadd 12154  df-xmul 12155  df-ioo 12388  df-ico 12390  df-icc 12391  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13016  df-exp 13075  df-hash 13329  df-cj 14140  df-re 14141  df-im 14142  df-sqrt 14276  df-abs 14277  df-clim 14520  df-rlim 14521  df-sum 14718  df-prod 14935  df-rest 16365  df-topgen 16386  df-psmet 20027  df-xmet 20028  df-met 20029  df-bl 20030  df-mopn 20031  df-top 20994  df-topon 21011  df-bases 21046  df-cmp 21486  df-ovol 23538  df-vol 23539  df-sumge0 41243  df-ovoln 41417
This theorem is referenced by:  hspmbllem2  41507
  Copyright terms: Public domain W3C validator