Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlecvr2 Structured version   Visualization version   GIF version

Theorem ovnlecvr2 43249
Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovnlecvr2.x (𝜑𝑋 ∈ Fin)
ovnlecvr2.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
ovnlecvr2.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
ovnlecvr2.s (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
ovnlecvr2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnlecvr2 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘,𝑎,𝑏)   𝐶(𝑥,𝑗)   𝐷(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem ovnlecvr2
Dummy variables 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6647 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
32adantl 485 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
4 ovnlecvr2.s . . . . . . 7 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
54adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
6 1nn 11636 . . . . . . . . . . 11 1 ∈ ℕ
7 ne0i 4250 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
86, 7ax-mp 5 . . . . . . . . . 10 ℕ ≠ ∅
98a1i 11 . . . . . . . . 9 (𝜑 → ℕ ≠ ∅)
10 iunconst 4890 . . . . . . . . 9 (ℕ ≠ ∅ → 𝑗 ∈ ℕ {∅} = {∅})
119, 10syl 17 . . . . . . . 8 (𝜑 𝑗 ∈ ℕ {∅} = {∅})
1211adantr 484 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ {∅} = {∅})
13 ixpeq1 8455 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
14 ixp0x 8473 . . . . . . . . . . . 12 X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅}
1514a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1613, 15eqtrd 2833 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1716adantr 484 . . . . . . . . 9 ((𝑋 = ∅ ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1817iuneq2dv 4905 . . . . . . . 8 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
1918adantl 485 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
20 reex 10617 . . . . . . . . 9 ℝ ∈ V
21 mapdm0 8404 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
2220, 21ax-mp 5 . . . . . . . 8 (ℝ ↑m ∅) = {∅}
2322a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → (ℝ ↑m ∅) = {∅})
2412, 19, 233eqtr4d 2843 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (ℝ ↑m ∅))
255, 24sseqtrd 3955 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅))
2625ovn0val 43189 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0)
273, 26eqtrd 2833 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0)
28 nfv 1915 . . . . 5 𝑗𝜑
29 nnex 11631 . . . . . 6 ℕ ∈ V
3029a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
31 icossicc 12814 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
32 ovnlecvr2.l . . . . . . 7 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
33 ovnlecvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
3433adantr 484 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
35 ovnlecvr2.c . . . . . . . . 9 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
3635ffvelrnda 6828 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑋))
37 elmapi 8411 . . . . . . . 8 ((𝐶𝑗) ∈ (ℝ ↑m 𝑋) → (𝐶𝑗):𝑋⟶ℝ)
3836, 37syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
39 ovnlecvr2.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
4039ffvelrnda 6828 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑋))
41 elmapi 8411 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑m 𝑋) → (𝐷𝑗):𝑋⟶ℝ)
4240, 41syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
4332, 34, 38, 42hoidmvcl 43221 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
4431, 43sseldi 3913 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
4528, 30, 44sge0ge0mpt 43077 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4645adantr 484 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4727, 46eqbrtrd 5052 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
48 simpl 486 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑)
49 neqne 2995 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
5049adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
5133adantr 484 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
52 simpr 488 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
5338ffvelrnda 6828 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
5442ffvelrnda 6828 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ)
5554rexrd 10680 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
56 icossre 12806 . . . . . . . . . . . . 13 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ*) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5753, 55, 56syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5857ralrimiva 3149 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
59 ss2ixp 8457 . . . . . . . . . . 11 (∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6058, 59syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6120a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
62 ixpconstg 8453 . . . . . . . . . . . 12 ((𝑋 ∈ Fin ∧ ℝ ∈ V) → X𝑘𝑋 ℝ = (ℝ ↑m 𝑋))
6333, 61, 62syl2anc 587 . . . . . . . . . . 11 (𝜑X𝑘𝑋 ℝ = (ℝ ↑m 𝑋))
6463adantr 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 ℝ = (ℝ ↑m 𝑋))
6560, 64sseqtrd 3955 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
6665ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
67 iunss 4932 . . . . . . . 8 ( 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
6866, 67sylibr 237 . . . . . . 7 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
694, 68sstrd 3925 . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
7069adantr 484 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐴 ⊆ (ℝ ↑m 𝑋))
71 eqid 2798 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
7251, 52, 70, 71ovnn0val 43190 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
73 ssrab2 4007 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
7473a1i 11 . . . . 5 ((𝜑𝑋 ≠ ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*)
7528, 30, 44sge0xrclmpt 43067 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
7675adantr 484 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
77 opelxpi 5556 . . . . . . . . . . . . . 14 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
7853, 54, 77syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
7978fmpttd 6856 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
8020, 20xpex 7456 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
8180a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
82 elmapg 8402 . . . . . . . . . . . . 13 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8381, 34, 82syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8479, 83mpbird 260 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
8584fmpttd 6856 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
86 ovexd 7170 . . . . . . . . . . 11 (𝜑 → ((ℝ × ℝ) ↑m 𝑋) ∈ V)
87 elmapg 8402 . . . . . . . . . . 11 ((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
8886, 30, 87syl2anc 587 . . . . . . . . . 10 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
8985, 88mpbird 260 . . . . . . . . 9 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
9089adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
91 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
92 mptexg 6961 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9333, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9493adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
95 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9695fvmpt2 6756 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9791, 94, 96syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9897coeq2d 5697 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)) = ([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)))
9998fveq1d 6647 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
10099adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
10179adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
102 simpr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
103101, 102fvovco 41821 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘) = ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))))
104 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → 𝑘𝑋)
105 opex 5321 . . . . . . . . . . . . . . . . . . . 20 ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V
106105a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V)
107 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
108107fvmpt2 6756 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑋 ∧ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
109104, 106, 108syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
110109fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
111 fvex 6658 . . . . . . . . . . . . . . . . . . 19 ((𝐶𝑗)‘𝑘) ∈ V
112 fvex 6658 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗)‘𝑘) ∈ V
113 op1stg 7683 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)‘𝑘) ∈ V ∧ ((𝐷𝑗)‘𝑘) ∈ V) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
114111, 112, 113mp2an 691 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘)
115114a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
116110, 115eqtrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐶𝑗)‘𝑘))
117109fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
118111, 112op2nd 7680 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘)
119118a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘))
120117, 119eqtrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐷𝑗)‘𝑘))
121116, 120oveq12d 7153 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
122121adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
123100, 103, 1223eqtrrd 2838 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
124123ixpeq2dva 8459 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
125124iuneq2dv 4905 . . . . . . . . . . 11 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
1264, 125sseqtrd 3955 . . . . . . . . . 10 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
127126adantr 484 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
128 eqidd 2799 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
12951adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
13052adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅)
13138adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
13242adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
13332, 129, 130, 131, 132hoidmvn0val 43223 . . . . . . . . . . . 12 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
134133mpteq2dva 5125 . . . . . . . . . . 11 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
135134fveq2d 6649 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
136123eqcomd 2804 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
137136fveq2d 6649 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
138137prodeq2dv 15269 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
139138mpteq2dva 5125 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
140139fveq2d 6649 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
141140adantr 484 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
142128, 135, 1413eqtr4d 2843 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
143127, 142jca 515 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
144 nfcv 2955 . . . . . . . . . . . . 13 𝑗𝑖
145 nfmpt1 5128 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
146144, 145nfeq 2968 . . . . . . . . . . . 12 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
147 nfcv 2955 . . . . . . . . . . . . . . 15 𝑘𝑖
148 nfcv 2955 . . . . . . . . . . . . . . . 16 𝑘
149 nfmpt1 5128 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
150148, 149nfmpt 5127 . . . . . . . . . . . . . . 15 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
151147, 150nfeq 2968 . . . . . . . . . . . . . 14 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
152 fveq1 6644 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))
153152coeq2d 5697 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)))
154153fveq1d 6647 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
155154adantr 484 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
156151, 155ixpeq2d 41702 . . . . . . . . . . . . 13 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
157156adantr 484 . . . . . . . . . . . 12 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
158146, 157iuneq2df 41680 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
159158sseq2d 3947 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
160 nfv 1915 . . . . . . . . . . . . . . . 16 𝑘 𝑗 ∈ ℕ
161151, 160nfan 1900 . . . . . . . . . . . . . . 15 𝑘(𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ)
162154fveq2d 6649 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
163162a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
164163adantr 484 . . . . . . . . . . . . . . 15 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
165161, 164ralrimi 3180 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
166165prodeq2d 15268 . . . . . . . . . . . . 13 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
167146, 166mpteq2da 5124 . . . . . . . . . . . 12 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
168167fveq2d 6649 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
169168eqeq2d 2809 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
170159, 169anbi12d 633 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))))
171170rspcev 3571 . . . . . . . 8 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17290, 143, 171syl2anc 587 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17376, 172jca 515 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
174 eqeq1 2802 . . . . . . . . 9 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
175174anbi2d 631 . . . . . . . 8 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
176175rexbidv 3256 . . . . . . 7 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
177176elrab 3628 . . . . . 6 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
178173, 177sylibr 237 . . . . 5 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
179 infxrlb 12715 . . . . 5 (({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ* ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18074, 178, 179syl2anc 587 . . . 4 ((𝜑𝑋 ≠ ∅) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18172, 180eqbrtrd 5052 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18248, 50, 181syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18347, 182pm2.61dan 812 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  c0 4243  ifcif 4425  {csn 4525  cop 4531   ciun 4881   class class class wbr 5030  cmpt 5110   × cxp 5517  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  m cmap 8389  Xcixp 8444  Fincfn 8492  infcinf 8889  cr 10525  0cc0 10526  1c1 10527  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cn 11625  [,)cico 12728  [,]cicc 12729  cprod 15251  volcvol 24067  Σ^csumge0 43001  voln*covoln 43175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-prod 15252  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069  df-sumge0 43002  df-ovoln 43176
This theorem is referenced by:  hspmbllem2  43266
  Copyright terms: Public domain W3C validator