Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlecvr2 Structured version   Visualization version   GIF version

Theorem ovnlecvr2 44038
Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovnlecvr2.x (𝜑𝑋 ∈ Fin)
ovnlecvr2.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
ovnlecvr2.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
ovnlecvr2.s (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
ovnlecvr2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnlecvr2 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘,𝑎,𝑏)   𝐶(𝑥,𝑗)   𝐷(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem ovnlecvr2
Dummy variables 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6758 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
32adantl 481 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
4 ovnlecvr2.s . . . . . . 7 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
54adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
6 1nn 11914 . . . . . . . . . . 11 1 ∈ ℕ
7 ne0i 4265 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
86, 7ax-mp 5 . . . . . . . . . 10 ℕ ≠ ∅
98a1i 11 . . . . . . . . 9 (𝜑 → ℕ ≠ ∅)
10 iunconst 4930 . . . . . . . . 9 (ℕ ≠ ∅ → 𝑗 ∈ ℕ {∅} = {∅})
119, 10syl 17 . . . . . . . 8 (𝜑 𝑗 ∈ ℕ {∅} = {∅})
1211adantr 480 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ {∅} = {∅})
13 ixpeq1 8654 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
14 ixp0x 8672 . . . . . . . . . . . 12 X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅}
1514a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1613, 15eqtrd 2778 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1716adantr 480 . . . . . . . . 9 ((𝑋 = ∅ ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = {∅})
1817iuneq2dv 4945 . . . . . . . 8 (𝑋 = ∅ → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
1918adantl 481 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ {∅})
20 reex 10893 . . . . . . . . 9 ℝ ∈ V
21 mapdm0 8588 . . . . . . . . 9 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
2220, 21ax-mp 5 . . . . . . . 8 (ℝ ↑m ∅) = {∅}
2322a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → (ℝ ↑m ∅) = {∅})
2412, 19, 233eqtr4d 2788 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (ℝ ↑m ∅))
255, 24sseqtrd 3957 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅))
2625ovn0val 43978 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0)
273, 26eqtrd 2778 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0)
28 nfv 1918 . . . . 5 𝑗𝜑
29 nnex 11909 . . . . . 6 ℕ ∈ V
3029a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
31 icossicc 13097 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
32 ovnlecvr2.l . . . . . . 7 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
33 ovnlecvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
3433adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
35 ovnlecvr2.c . . . . . . . . 9 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
3635ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑋))
37 elmapi 8595 . . . . . . . 8 ((𝐶𝑗) ∈ (ℝ ↑m 𝑋) → (𝐶𝑗):𝑋⟶ℝ)
3836, 37syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
39 ovnlecvr2.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
4039ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑋))
41 elmapi 8595 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑m 𝑋) → (𝐷𝑗):𝑋⟶ℝ)
4240, 41syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
4332, 34, 38, 42hoidmvcl 44010 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
4431, 43sselid 3915 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
4528, 30, 44sge0ge0mpt 43866 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4645adantr 480 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
4727, 46eqbrtrd 5092 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
48 simpl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑)
49 neqne 2950 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
5049adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
5133adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
52 simpr 484 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
5338ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
5442ffvelrnda 6943 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ)
5554rexrd 10956 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
56 icossre 13089 . . . . . . . . . . . . 13 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ*) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5753, 55, 56syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
5857ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
59 ss2ixp 8656 . . . . . . . . . . 11 (∀𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6058, 59syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ X𝑘𝑋 ℝ)
6120a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
62 ixpconstg 8652 . . . . . . . . . . . 12 ((𝑋 ∈ Fin ∧ ℝ ∈ V) → X𝑘𝑋 ℝ = (ℝ ↑m 𝑋))
6333, 61, 62syl2anc 583 . . . . . . . . . . 11 (𝜑X𝑘𝑋 ℝ = (ℝ ↑m 𝑋))
6463adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 ℝ = (ℝ ↑m 𝑋))
6560, 64sseqtrd 3957 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
6665ralrimiva 3107 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
67 iunss 4971 . . . . . . . 8 ( 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
6866, 67sylibr 233 . . . . . . 7 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ (ℝ ↑m 𝑋))
694, 68sstrd 3927 . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
7069adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐴 ⊆ (ℝ ↑m 𝑋))
71 eqid 2738 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
7251, 52, 70, 71ovnn0val 43979 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
73 ssrab2 4009 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
7473a1i 11 . . . . 5 ((𝜑𝑋 ≠ ∅) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*)
7528, 30, 44sge0xrclmpt 43856 . . . . . . . 8 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
7675adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ*)
77 opelxpi 5617 . . . . . . . . . . . . . 14 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
7853, 54, 77syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ (ℝ × ℝ))
7978fmpttd 6971 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
8020, 20xpex 7581 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
8180a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
82 elmapg 8586 . . . . . . . . . . . . 13 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8381, 34, 82syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ)))
8479, 83mpbird 256 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
8584fmpttd 6971 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋))
86 ovexd 7290 . . . . . . . . . . 11 (𝜑 → ((ℝ × ℝ) ↑m 𝑋) ∈ V)
87 elmapg 8586 . . . . . . . . . . 11 ((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
8886, 30, 87syl2anc 583 . . . . . . . . . 10 (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)):ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
8985, 88mpbird 256 . . . . . . . . 9 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
9089adantr 480 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
91 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
92 mptexg 7079 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ Fin → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9333, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
9493adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V)
95 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9695fvmpt2 6868 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9791, 94, 96syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
9897coeq2d 5760 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)) = ([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)))
9998fveq1d 6758 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
10099adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘))
10179adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩):𝑋⟶(ℝ × ℝ))
102 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
103101, 102fvovco 42621 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑘) = ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))))
104 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → 𝑘𝑋)
105 opex 5373 . . . . . . . . . . . . . . . . . . . 20 ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V
106105a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V)
107 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
108107fvmpt2 6868 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑋 ∧ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩ ∈ V) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
109104, 106, 108syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘) = ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
110109fveq2d 6760 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
111 fvex 6769 . . . . . . . . . . . . . . . . . . 19 ((𝐶𝑗)‘𝑘) ∈ V
112 fvex 6769 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗)‘𝑘) ∈ V
113 op1stg 7816 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)‘𝑘) ∈ V ∧ ((𝐷𝑗)‘𝑘) ∈ V) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
114111, 112, 113mp2an 688 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘)
115114a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (1st ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐶𝑗)‘𝑘))
116110, 115eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐶𝑗)‘𝑘))
117109fveq2d 6760 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
118111, 112op2nd 7813 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘)
119118a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (2nd ‘⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩) = ((𝐷𝑗)‘𝑘))
120117, 119eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘)) = ((𝐷𝑗)‘𝑘))
121116, 120oveq12d 7273 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
122121adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))[,)(2nd ‘((𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)‘𝑘))) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
123100, 103, 1223eqtrrd 2783 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
124123ixpeq2dva 8658 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
125124iuneq2dv 4945 . . . . . . . . . . 11 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
1264, 125sseqtrd 3957 . . . . . . . . . 10 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
127126adantr 480 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
128 eqidd 2739 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
12951adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
13052adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅)
13138adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
13242adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
13332, 129, 130, 131, 132hoidmvn0val 44012 . . . . . . . . . . . 12 (((𝜑𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
134133mpteq2dva 5170 . . . . . . . . . . 11 ((𝜑𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
135134fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
136123eqcomd 2744 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) = (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
137136fveq2d 6760 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
138137prodeq2dv 15561 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
139138mpteq2dva 5170 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
140139fveq2d 6760 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
141140adantr 480 . . . . . . . . . 10 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
142128, 135, 1413eqtr4d 2788 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
143127, 142jca 511 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
144 nfcv 2906 . . . . . . . . . . . . 13 𝑗𝑖
145 nfmpt1 5178 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
146144, 145nfeq 2919 . . . . . . . . . . . 12 𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
147 nfcv 2906 . . . . . . . . . . . . . . 15 𝑘𝑖
148 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑘
149 nfmpt1 5178 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)
150148, 149nfmpt 5177 . . . . . . . . . . . . . . 15 𝑘(𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
151147, 150nfeq 2919 . . . . . . . . . . . . . 14 𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))
152 fveq1 6755 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑖𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))
153152coeq2d 5760 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗)))
154153fveq1d 6758 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
155154adantr 480 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
156151, 155ixpeq2d 42505 . . . . . . . . . . . . 13 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
157156adantr 480 . . . . . . . . . . . 12 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
158146, 157iuneq2df 42483 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))
159158sseq2d 3949 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
160 nfv 1918 . . . . . . . . . . . . . . . 16 𝑘 𝑗 ∈ ℕ
161151, 160nfan 1903 . . . . . . . . . . . . . . 15 𝑘(𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ)
162154fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
163162a1d 25 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
164163adantr 480 . . . . . . . . . . . . . . 15 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → (𝑘𝑋 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
165161, 164ralrimi 3139 . . . . . . . . . . . . . 14 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
166165prodeq2d 15560 . . . . . . . . . . . . 13 ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))
167146, 166mpteq2da 5168 . . . . . . . . . . . 12 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))
168167fveq2d 6760 . . . . . . . . . . 11 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))
169168eqeq2d 2749 . . . . . . . . . 10 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘))))))
170159, 169anbi12d 630 . . . . . . . . 9 (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))))
171170rspcev 3552 . . . . . . . 8 (((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩)) ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ ⟨((𝐶𝑗)‘𝑘), ((𝐷𝑗)‘𝑘)⟩))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17290, 143, 171syl2anc 583 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17376, 172jca 511 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
174 eqeq1 2742 . . . . . . . . 9 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
175174anbi2d 628 . . . . . . . 8 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
176175rexbidv 3225 . . . . . . 7 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
177176elrab 3617 . . . . . 6 ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
178173, 177sylibr 233 . . . . 5 ((𝜑𝑋 ≠ ∅) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
179 infxrlb 12997 . . . . 5 (({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ* ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18074, 178, 179syl2anc 583 . . . 4 ((𝜑𝑋 ≠ ∅) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18172, 180eqbrtrd 5092 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18248, 50, 181syl2anc 583 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
18347, 182pm2.61dan 809 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  {csn 4558  cop 4564   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Xcixp 8643  Fincfn 8691  infcinf 9130  cr 10801  0cc0 10802  1c1 10803  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cn 11903  [,)cico 13010  [,]cicc 13011  cprod 15543  volcvol 24532  Σ^csumge0 43790  voln*covoln 43964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791  df-ovoln 43965
This theorem is referenced by:  hspmbllem2  44055
  Copyright terms: Public domain W3C validator