Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunicl Structured version   Visualization version   GIF version

Theorem fiunicl 42615
Description: If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fiunicl.1 ((𝜑𝑥𝐴𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
fiunicl.2 (𝜑𝐴 ∈ Fin)
fiunicl.3 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fiunicl (𝜑 𝐴𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fiunicl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uniiun 4988 . 2 𝐴 = 𝑧𝐴 𝑧
2 nfv 1917 . . 3 𝑧𝜑
3 simpr 485 . . 3 ((𝜑𝑧𝐴) → 𝑧𝐴)
4 fiunicl.1 . . 3 ((𝜑𝑥𝐴𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
5 fiunicl.2 . . 3 (𝜑𝐴 ∈ Fin)
6 fiunicl.3 . . 3 (𝜑𝐴 ≠ ∅)
72, 3, 4, 5, 6fiiuncl 42613 . 2 (𝜑 𝑧𝐴 𝑧𝐴)
81, 7eqeltrid 2843 1 (𝜑 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  wne 2943  cun 3885  c0 4256   cuni 4839   ciun 4924  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-en 8734  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator