Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fiunicl | Structured version Visualization version GIF version |
Description: If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fiunicl.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝐴) |
fiunicl.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fiunicl.3 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
fiunicl | ⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4993 | . 2 ⊢ ∪ 𝐴 = ∪ 𝑧 ∈ 𝐴 𝑧 | |
2 | nfv 1921 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | |
4 | fiunicl.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝐴) | |
5 | fiunicl.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | fiunicl.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
7 | 2, 3, 4, 5, 6 | fiiuncl 42583 | . 2 ⊢ (𝜑 → ∪ 𝑧 ∈ 𝐴 𝑧 ∈ 𝐴) |
8 | 1, 7 | eqeltrid 2845 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2110 ≠ wne 2945 ∪ cun 3890 ∅c0 4262 ∪ cuni 4845 ∪ ciun 4930 Fincfn 8716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-om 7707 df-en 8717 df-fin 8720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |