Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunicl Structured version   Visualization version   GIF version

Theorem fiunicl 45174
Description: If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fiunicl.1 ((𝜑𝑥𝐴𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
fiunicl.2 (𝜑𝐴 ∈ Fin)
fiunicl.3 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fiunicl (𝜑 𝐴𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fiunicl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uniiun 5005 . 2 𝐴 = 𝑧𝐴 𝑧
2 nfv 1915 . . 3 𝑧𝜑
3 simpr 484 . . 3 ((𝜑𝑧𝐴) → 𝑧𝐴)
4 fiunicl.1 . . 3 ((𝜑𝑥𝐴𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
5 fiunicl.2 . . 3 (𝜑𝐴 ∈ Fin)
6 fiunicl.3 . . 3 (𝜑𝐴 ≠ ∅)
72, 3, 4, 5, 6fiiuncl 45172 . 2 (𝜑 𝑧𝐴 𝑧𝐴)
81, 7eqeltrid 2835 1 (𝜑 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  wne 2928  cun 3895  c0 4280   cuni 4856   ciun 4939  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-en 8870  df-fin 8873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator