Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpssixp | Structured version Visualization version GIF version |
Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
ixpssixp.1 | ⊢ Ⅎ𝑥𝜑 |
ixpssixp.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ixpssixp | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssixp.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ixpssixp.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
3 | 2 | ex 417 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
4 | 1, 3 | ralrimi 3145 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
5 | ss2ixp 8493 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 Ⅎwnf 1786 ∈ wcel 2112 ∀wral 3071 ⊆ wss 3859 Xcixp 8480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-v 3412 df-in 3866 df-ss 3876 df-ixp 8481 |
This theorem is referenced by: ioosshoi 43675 iinhoiicclem 43679 iinhoiicc 43680 iunhoiioo 43682 vonioolem2 43687 vonicclem2 43690 |
Copyright terms: Public domain | W3C validator |