Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpssixp Structured version   Visualization version   GIF version

Theorem ixpssixp 42642
Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ixpssixp.1 𝑥𝜑
ixpssixp.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
ixpssixp (𝜑X𝑥𝐴 𝐵X𝑥𝐴 𝐶)

Proof of Theorem ixpssixp
StepHypRef Expression
1 ixpssixp.1 . . 3 𝑥𝜑
2 ixpssixp.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 413 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3141 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 ss2ixp 8698 . 2 (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1786  wcel 2106  wral 3064  wss 3887  Xcixp 8685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-ixp 8686
This theorem is referenced by:  ioosshoi  44207  iinhoiicclem  44211  iinhoiicc  44212  iunhoiioo  44214  vonioolem2  44219  vonicclem2  44222
  Copyright terms: Public domain W3C validator