Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpssixp Structured version   Visualization version   GIF version

Theorem ixpssixp 44235
Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ixpssixp.1 𝑥𝜑
ixpssixp.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
ixpssixp (𝜑X𝑥𝐴 𝐵X𝑥𝐴 𝐶)

Proof of Theorem ixpssixp
StepHypRef Expression
1 ixpssixp.1 . . 3 𝑥𝜑
2 ixpssixp.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3246 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 ss2ixp 8899 . 2 (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1777  wcel 2098  wral 3053  wss 3940  Xcixp 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-v 3468  df-in 3947  df-ss 3957  df-ixp 8887
This theorem is referenced by:  ioosshoi  45836  iinhoiicclem  45840  iinhoiicc  45841  iunhoiioo  45843  vonioolem2  45848  vonicclem2  45851
  Copyright terms: Public domain W3C validator