![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioosshoi | Structured version Visualization version GIF version |
Description: A n-dimensional open interval is a subset of the half-open interval with the same bounds. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
ioosshoi | ⊢ X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑘⊤ | |
2 | ioossico 13420 | . . . 4 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((⊤ ∧ 𝑘 ∈ 𝑋) → (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)) |
4 | 1, 3 | ixpssixp 44083 | . 2 ⊢ (⊤ → X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)𝐵)) |
5 | 4 | mptru 1547 | 1 ⊢ X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ⊤wtru 1541 ∈ wcel 2105 ⊆ wss 3948 (class class class)co 7412 Xcixp 8894 (,)cioo 13329 [,)cico 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-pre-lttri 11187 ax-pre-lttrn 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-ioo 13333 df-ico 13335 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |