Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioo Structured version   Visualization version   GIF version

Theorem iunhoiioo 45378
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioo.k 𝑘𝜑
iunhoiioo.x (𝜑𝑋 ∈ Fin)
iunhoiioo.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioo.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
iunhoiioo (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iunhoiioo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nnn0 44074 . . . . . 6 ℕ ≠ ∅
2 iunconst 5005 . . . . . 6 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {∅} = {∅})
31, 2ax-mp 5 . . . . 5 𝑛 ∈ ℕ {∅} = {∅}
43a1i 11 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ {∅} = {∅})
5 ixpeq1 8898 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵))
6 ixp0x 8916 . . . . . . . 8 X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}
76a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
85, 7eqtrd 2772 . . . . . 6 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
98adantr 481 . . . . 5 ((𝑋 = ∅ ∧ 𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
109iuneq2dv 5020 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = 𝑛 ∈ ℕ {∅})
11 ixpeq1 8898 . . . . 5 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = X𝑘 ∈ ∅ (𝐴(,)𝐵))
12 ixp0x 8916 . . . . . 6 X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅}
1312a1i 11 . . . . 5 (𝑋 = ∅ → X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅})
1411, 13eqtrd 2772 . . . 4 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = {∅})
154, 10, 143eqtr4d 2782 . . 3 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
1615adantl 482 . 2 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
17 iunhoiioo.k . . . . . . . 8 𝑘𝜑
18 nfv 1917 . . . . . . . 8 𝑘 𝑛 ∈ ℕ
1917, 18nfan 1902 . . . . . . 7 𝑘(𝜑𝑛 ∈ ℕ)
20 iunhoiioo.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
2120rexrd 11260 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
2221adantlr 713 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
23 iunhoiioo.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
2423adantlr 713 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
2520adantlr 713 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
26 nnrp 12981 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2726ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
2827rpreccld 13022 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
2925, 28ltaddrpd 13045 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 < (𝐴 + (1 / 𝑛)))
3023xrleidd 13127 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵𝐵)
3130adantlr 713 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵𝐵)
32 icossioo 13413 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < (𝐴 + (1 / 𝑛)) ∧ 𝐵𝐵)) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3322, 24, 29, 31, 32syl22anc 837 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3419, 33ixpssixp 43766 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3534ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
36 iunss 5047 . . . . 5 ( 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3735, 36sylibr 233 . . . 4 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3837adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
39 nfv 1917 . . . . . 6 𝑘 ¬ 𝑋 = ∅
4017, 39nfan 1902 . . . . 5 𝑘(𝜑 ∧ ¬ 𝑋 = ∅)
41 nfcv 2903 . . . . . 6 𝑘𝑓
42 nfixp1 8908 . . . . . 6 𝑘X𝑘𝑋 (𝐴(,)𝐵)
4341, 42nfel 2917 . . . . 5 𝑘 𝑓X𝑘𝑋 (𝐴(,)𝐵)
4440, 43nfan 1902 . . . 4 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵))
45 iunhoiioo.x . . . . 5 (𝜑𝑋 ∈ Fin)
4645ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ∈ Fin)
47 neqne 2948 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
4847ad2antlr 725 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ≠ ∅)
4920ad4ant14 750 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
5023ad4ant14 750 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
51 simpr 485 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓X𝑘𝑋 (𝐴(,)𝐵))
52 eqid 2732 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < )
5344, 46, 48, 49, 50, 51, 52iunhoiioolem 45377 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
5438, 53eqelssd 4002 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
5516, 54pm2.61dan 811 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2940  wral 3061  wss 3947  c0 4321  {csn 4627   ciun 4996   class class class wbr 5147  cmpt 5230  ran crn 5676  cfv 6540  (class class class)co 7405  Xcixp 8887  Fincfn 8935  infcinf 9432  cr 11105  1c1 11107   + caddc 11109  *cxr 11243   < clt 11244  cle 11245  cmin 11440   / cdiv 11867  cn 12208  +crp 12970  (,)cioo 13320  [,)cico 13322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ioo 13324  df-ico 13326  df-fl 13753
This theorem is referenced by:  vonioolem2  45383
  Copyright terms: Public domain W3C validator