Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioo Structured version   Visualization version   GIF version

Theorem iunhoiioo 46836
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioo.k 𝑘𝜑
iunhoiioo.x (𝜑𝑋 ∈ Fin)
iunhoiioo.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioo.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
iunhoiioo (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iunhoiioo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nnn0 45538 . . . . . 6 ℕ ≠ ∅
2 iunconst 4953 . . . . . 6 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {∅} = {∅})
31, 2ax-mp 5 . . . . 5 𝑛 ∈ ℕ {∅} = {∅}
43a1i 11 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ {∅} = {∅})
5 ixpeq1 8842 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵))
6 ixp0x 8860 . . . . . . . 8 X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}
76a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
85, 7eqtrd 2768 . . . . . 6 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
98adantr 480 . . . . 5 ((𝑋 = ∅ ∧ 𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
109iuneq2dv 4968 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = 𝑛 ∈ ℕ {∅})
11 ixpeq1 8842 . . . . 5 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = X𝑘 ∈ ∅ (𝐴(,)𝐵))
12 ixp0x 8860 . . . . . 6 X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅}
1312a1i 11 . . . . 5 (𝑋 = ∅ → X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅})
1411, 13eqtrd 2768 . . . 4 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = {∅})
154, 10, 143eqtr4d 2778 . . 3 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
1615adantl 481 . 2 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
17 iunhoiioo.k . . . . . . . 8 𝑘𝜑
18 nfv 1915 . . . . . . . 8 𝑘 𝑛 ∈ ℕ
1917, 18nfan 1900 . . . . . . 7 𝑘(𝜑𝑛 ∈ ℕ)
20 iunhoiioo.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
2120rexrd 11173 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
2221adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
23 iunhoiioo.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
2423adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
2520adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
26 nnrp 12908 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2726ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
2827rpreccld 12950 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
2925, 28ltaddrpd 12973 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 < (𝐴 + (1 / 𝑛)))
3023xrleidd 13057 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵𝐵)
3130adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵𝐵)
32 icossioo 13347 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < (𝐴 + (1 / 𝑛)) ∧ 𝐵𝐵)) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3322, 24, 29, 31, 32syl22anc 838 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3419, 33ixpssixp 45252 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3534ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
36 iunss 4997 . . . . 5 ( 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3735, 36sylibr 234 . . . 4 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3837adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
39 nfv 1915 . . . . . 6 𝑘 ¬ 𝑋 = ∅
4017, 39nfan 1900 . . . . 5 𝑘(𝜑 ∧ ¬ 𝑋 = ∅)
41 nfcv 2895 . . . . . 6 𝑘𝑓
42 nfixp1 8852 . . . . . 6 𝑘X𝑘𝑋 (𝐴(,)𝐵)
4341, 42nfel 2910 . . . . 5 𝑘 𝑓X𝑘𝑋 (𝐴(,)𝐵)
4440, 43nfan 1900 . . . 4 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵))
45 iunhoiioo.x . . . . 5 (𝜑𝑋 ∈ Fin)
4645ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ∈ Fin)
47 neqne 2937 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
4847ad2antlr 727 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ≠ ∅)
4920ad4ant14 752 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
5023ad4ant14 752 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
51 simpr 484 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓X𝑘𝑋 (𝐴(,)𝐵))
52 eqid 2733 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < )
5344, 46, 48, 49, 50, 51, 52iunhoiioolem 46835 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
5438, 53eqelssd 3952 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
5516, 54pm2.61dan 812 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wne 2929  wral 3048  wss 3898  c0 4282  {csn 4577   ciun 4943   class class class wbr 5095  cmpt 5176  ran crn 5622  cfv 6489  (class class class)co 7355  Xcixp 8831  Fincfn 8879  infcinf 9336  cr 11016  1c1 11018   + caddc 11020  *cxr 11156   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  +crp 12896  (,)cioo 13252  [,)cico 13254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-ioo 13256  df-ico 13258  df-fl 13703
This theorem is referenced by:  vonioolem2  46841
  Copyright terms: Public domain W3C validator