Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioo Structured version   Visualization version   GIF version

Theorem iunhoiioo 43889
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioo.k 𝑘𝜑
iunhoiioo.x (𝜑𝑋 ∈ Fin)
iunhoiioo.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioo.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
iunhoiioo (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iunhoiioo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nnn0 42590 . . . . . 6 ℕ ≠ ∅
2 iunconst 4913 . . . . . 6 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {∅} = {∅})
31, 2ax-mp 5 . . . . 5 𝑛 ∈ ℕ {∅} = {∅}
43a1i 11 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ {∅} = {∅})
5 ixpeq1 8589 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵))
6 ixp0x 8607 . . . . . . . 8 X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}
76a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
85, 7eqtrd 2777 . . . . . 6 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
98adantr 484 . . . . 5 ((𝑋 = ∅ ∧ 𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
109iuneq2dv 4928 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = 𝑛 ∈ ℕ {∅})
11 ixpeq1 8589 . . . . 5 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = X𝑘 ∈ ∅ (𝐴(,)𝐵))
12 ixp0x 8607 . . . . . 6 X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅}
1312a1i 11 . . . . 5 (𝑋 = ∅ → X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅})
1411, 13eqtrd 2777 . . . 4 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = {∅})
154, 10, 143eqtr4d 2787 . . 3 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
1615adantl 485 . 2 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
17 iunhoiioo.k . . . . . . . 8 𝑘𝜑
18 nfv 1922 . . . . . . . 8 𝑘 𝑛 ∈ ℕ
1917, 18nfan 1907 . . . . . . 7 𝑘(𝜑𝑛 ∈ ℕ)
20 iunhoiioo.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
2120rexrd 10883 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
2221adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
23 iunhoiioo.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
2423adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
2520adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
26 nnrp 12597 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2726ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
2827rpreccld 12638 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
2925, 28ltaddrpd 12661 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 < (𝐴 + (1 / 𝑛)))
3023xrleidd 12742 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵𝐵)
3130adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵𝐵)
32 icossioo 13028 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < (𝐴 + (1 / 𝑛)) ∧ 𝐵𝐵)) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3322, 24, 29, 31, 32syl22anc 839 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3419, 33ixpssixp 42315 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3534ralrimiva 3105 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
36 iunss 4954 . . . . 5 ( 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3735, 36sylibr 237 . . . 4 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3837adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
39 nfv 1922 . . . . . 6 𝑘 ¬ 𝑋 = ∅
4017, 39nfan 1907 . . . . 5 𝑘(𝜑 ∧ ¬ 𝑋 = ∅)
41 nfcv 2904 . . . . . 6 𝑘𝑓
42 nfixp1 8599 . . . . . 6 𝑘X𝑘𝑋 (𝐴(,)𝐵)
4341, 42nfel 2918 . . . . 5 𝑘 𝑓X𝑘𝑋 (𝐴(,)𝐵)
4440, 43nfan 1907 . . . 4 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵))
45 iunhoiioo.x . . . . 5 (𝜑𝑋 ∈ Fin)
4645ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ∈ Fin)
47 neqne 2948 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
4847ad2antlr 727 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ≠ ∅)
4920ad4ant14 752 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
5023ad4ant14 752 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
51 simpr 488 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓X𝑘𝑋 (𝐴(,)𝐵))
52 eqid 2737 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < )
5344, 46, 48, 49, 50, 51, 52iunhoiioolem 43888 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
5438, 53eqelssd 3922 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
5516, 54pm2.61dan 813 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2110  wne 2940  wral 3061  wss 3866  c0 4237  {csn 4541   ciun 4904   class class class wbr 5053  cmpt 5135  ran crn 5552  cfv 6380  (class class class)co 7213  Xcixp 8578  Fincfn 8626  infcinf 9057  cr 10728  1c1 10730   + caddc 10732  *cxr 10866   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  +crp 12586  (,)cioo 12935  [,)cico 12937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ioo 12939  df-ico 12941  df-fl 13367
This theorem is referenced by:  vonioolem2  43894
  Copyright terms: Public domain W3C validator