Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioo Structured version   Visualization version   GIF version

Theorem iunhoiioo 44104
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioo.k 𝑘𝜑
iunhoiioo.x (𝜑𝑋 ∈ Fin)
iunhoiioo.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioo.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
iunhoiioo (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iunhoiioo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nnn0 42807 . . . . . 6 ℕ ≠ ∅
2 iunconst 4930 . . . . . 6 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {∅} = {∅})
31, 2ax-mp 5 . . . . 5 𝑛 ∈ ℕ {∅} = {∅}
43a1i 11 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ {∅} = {∅})
5 ixpeq1 8654 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵))
6 ixp0x 8672 . . . . . . . 8 X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}
76a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
85, 7eqtrd 2778 . . . . . 6 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
98adantr 480 . . . . 5 ((𝑋 = ∅ ∧ 𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
109iuneq2dv 4945 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = 𝑛 ∈ ℕ {∅})
11 ixpeq1 8654 . . . . 5 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = X𝑘 ∈ ∅ (𝐴(,)𝐵))
12 ixp0x 8672 . . . . . 6 X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅}
1312a1i 11 . . . . 5 (𝑋 = ∅ → X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅})
1411, 13eqtrd 2778 . . . 4 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = {∅})
154, 10, 143eqtr4d 2788 . . 3 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
1615adantl 481 . 2 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
17 iunhoiioo.k . . . . . . . 8 𝑘𝜑
18 nfv 1918 . . . . . . . 8 𝑘 𝑛 ∈ ℕ
1917, 18nfan 1903 . . . . . . 7 𝑘(𝜑𝑛 ∈ ℕ)
20 iunhoiioo.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
2120rexrd 10956 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
2221adantlr 711 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
23 iunhoiioo.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
2423adantlr 711 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
2520adantlr 711 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
26 nnrp 12670 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2726ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
2827rpreccld 12711 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
2925, 28ltaddrpd 12734 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 < (𝐴 + (1 / 𝑛)))
3023xrleidd 12815 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵𝐵)
3130adantlr 711 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵𝐵)
32 icossioo 13101 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < (𝐴 + (1 / 𝑛)) ∧ 𝐵𝐵)) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3322, 24, 29, 31, 32syl22anc 835 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3419, 33ixpssixp 42531 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3534ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
36 iunss 4971 . . . . 5 ( 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3735, 36sylibr 233 . . . 4 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3837adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
39 nfv 1918 . . . . . 6 𝑘 ¬ 𝑋 = ∅
4017, 39nfan 1903 . . . . 5 𝑘(𝜑 ∧ ¬ 𝑋 = ∅)
41 nfcv 2906 . . . . . 6 𝑘𝑓
42 nfixp1 8664 . . . . . 6 𝑘X𝑘𝑋 (𝐴(,)𝐵)
4341, 42nfel 2920 . . . . 5 𝑘 𝑓X𝑘𝑋 (𝐴(,)𝐵)
4440, 43nfan 1903 . . . 4 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵))
45 iunhoiioo.x . . . . 5 (𝜑𝑋 ∈ Fin)
4645ad2antrr 722 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ∈ Fin)
47 neqne 2950 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
4847ad2antlr 723 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ≠ ∅)
4920ad4ant14 748 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
5023ad4ant14 748 . . . 4 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
51 simpr 484 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓X𝑘𝑋 (𝐴(,)𝐵))
52 eqid 2738 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < )
5344, 46, 48, 49, 50, 51, 52iunhoiioolem 44103 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
5438, 53eqelssd 3938 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
5516, 54pm2.61dan 809 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253  {csn 4558   ciun 4921   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  Xcixp 8643  Fincfn 8691  infcinf 9130  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  +crp 12659  (,)cioo 13008  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440
This theorem is referenced by:  vonioolem2  44109
  Copyright terms: Public domain W3C validator