Step | Hyp | Ref
| Expression |
1 | | nnn0 42924 |
. . . . . 6
⊢ ℕ
≠ ∅ |
2 | | iunconst 4934 |
. . . . . 6
⊢ (ℕ
≠ ∅ → ∪ 𝑛 ∈ ℕ {∅} =
{∅}) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ {∅} =
{∅} |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝑋 = ∅ → ∪ 𝑛 ∈ ℕ {∅} =
{∅}) |
5 | | ixpeq1 8705 |
. . . . . . 7
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵)) |
6 | | ixp0x 8723 |
. . . . . . . 8
⊢ X𝑘 ∈
∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅} |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝑋 = ∅ → X𝑘 ∈
∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}) |
8 | 5, 7 | eqtrd 2779 |
. . . . . 6
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}) |
9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝑋 = ∅ ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}) |
10 | 9 | iuneq2dv 4949 |
. . . 4
⊢ (𝑋 = ∅ → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = ∪
𝑛 ∈ ℕ
{∅}) |
11 | | ixpeq1 8705 |
. . . . 5
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 (𝐴(,)𝐵) = X𝑘 ∈ ∅ (𝐴(,)𝐵)) |
12 | | ixp0x 8723 |
. . . . . 6
⊢ X𝑘 ∈
∅ (𝐴(,)𝐵) = {∅} |
13 | 12 | a1i 11 |
. . . . 5
⊢ (𝑋 = ∅ → X𝑘 ∈
∅ (𝐴(,)𝐵) = {∅}) |
14 | 11, 13 | eqtrd 2779 |
. . . 4
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 (𝐴(,)𝐵) = {∅}) |
15 | 4, 10, 14 | 3eqtr4d 2789 |
. . 3
⊢ (𝑋 = ∅ → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
16 | 15 | adantl 482 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
17 | | iunhoiioo.k |
. . . . . . . 8
⊢
Ⅎ𝑘𝜑 |
18 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑛 ∈ ℕ |
19 | 17, 18 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑘(𝜑 ∧ 𝑛 ∈ ℕ) |
20 | | iunhoiioo.a |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
21 | 20 | rexrd 11034 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈
ℝ*) |
22 | 21 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈
ℝ*) |
23 | | iunhoiioo.b |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈
ℝ*) |
24 | 23 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈
ℝ*) |
25 | 20 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
26 | | nnrp 12750 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
27 | 26 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝑛 ∈ ℝ+) |
28 | 27 | rpreccld 12791 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈
ℝ+) |
29 | 25, 28 | ltaddrpd 12814 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 < (𝐴 + (1 / 𝑛))) |
30 | 23 | xrleidd 12895 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ≤ 𝐵) |
31 | 30 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐵 ≤ 𝐵) |
32 | | icossioo 13181 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 < (𝐴 + (1 / 𝑛)) ∧ 𝐵 ≤ 𝐵)) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵)) |
33 | 22, 24, 29, 31, 32 | syl22anc 836 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵)) |
34 | 19, 33 | ixpssixp 42649 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
35 | 34 | ralrimiva 3104 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
36 | | iunss 4976 |
. . . . 5
⊢ (∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ↔ ∀𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
37 | 35, 36 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
38 | 37 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
39 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 ¬ 𝑋 = ∅ |
40 | 17, 39 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ ¬ 𝑋 = ∅) |
41 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑘𝑓 |
42 | | nfixp1 8715 |
. . . . . 6
⊢
Ⅎ𝑘X𝑘 ∈
𝑋 (𝐴(,)𝐵) |
43 | 41, 42 | nfel 2922 |
. . . . 5
⊢
Ⅎ𝑘 𝑓 ∈ X𝑘 ∈
𝑋 (𝐴(,)𝐵) |
44 | 40, 43 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
45 | | iunhoiioo.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
46 | 45 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) → 𝑋 ∈ Fin) |
47 | | neqne 2952 |
. . . . 5
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
48 | 47 | ad2antlr 724 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) → 𝑋 ≠ ∅) |
49 | 20 | ad4ant14 749 |
. . . 4
⊢ ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
50 | 23 | ad4ant14 749 |
. . . 4
⊢ ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈
ℝ*) |
51 | | simpr 485 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) → 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
52 | | eqid 2739 |
. . . 4
⊢ inf(ran
(𝑘 ∈ 𝑋 ↦ ((𝑓‘𝑘) − 𝐴)), ℝ, < ) = inf(ran (𝑘 ∈ 𝑋 ↦ ((𝑓‘𝑘) − 𝐴)), ℝ, < ) |
53 | 44, 46, 48, 49, 50, 51, 52 | iunhoiioolem 44220 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) → 𝑓 ∈ ∪
𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)) |
54 | 38, 53 | eqelssd 3943 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
55 | 16, 54 | pm2.61dan 810 |
1
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |