Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballss3 Structured version   Visualization version   GIF version

Theorem ballss3 42532
Description: A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ballss3.y 𝑥𝜑
ballss3.d (𝜑𝐷 ∈ (PsMet‘𝑋))
ballss3.p (𝜑𝑃𝑋)
ballss3.r (𝜑𝑅 ∈ ℝ*)
ballss3.a ((𝜑𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝐴)
Assertion
Ref Expression
ballss3 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑃   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑋(𝑥)

Proof of Theorem ballss3
StepHypRef Expression
1 ballss3.y . . 3 𝑥𝜑
2 simpl 482 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝜑)
3 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
4 ballss3.d . . . . . . . . 9 (𝜑𝐷 ∈ (PsMet‘𝑋))
5 ballss3.p . . . . . . . . 9 (𝜑𝑃𝑋)
6 ballss3.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
7 elblps 23448 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
84, 5, 6, 7syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
98adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
103, 9mpbid 231 . . . . . 6 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
1110simpld 494 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝑋)
1210simprd 495 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅)
13 ballss3.a . . . . 5 ((𝜑𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝐴)
142, 11, 12, 13syl3anc 1369 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝐴)
1514ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥𝐴))
161, 15ralrimi 3139 . 2 (𝜑 → ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥𝐴)
17 dfss3 3905 . 2 ((𝑃(ball‘𝐷)𝑅) ⊆ 𝐴 ↔ ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥𝐴)
1816, 17sylibr 233 1 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wnf 1787  wcel 2108  wral 3063  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  *cxr 10939   < clt 10940  PsMetcpsmet 20494  ballcbl 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-xr 10944  df-psmet 20502  df-bl 20505
This theorem is referenced by:  ioorrnopnlem  43735
  Copyright terms: Public domain W3C validator