Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballss3 Structured version   Visualization version   GIF version

Theorem ballss3 45033
Description: A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ballss3.y 𝑥𝜑
ballss3.d (𝜑𝐷 ∈ (PsMet‘𝑋))
ballss3.p (𝜑𝑃𝑋)
ballss3.r (𝜑𝑅 ∈ ℝ*)
ballss3.a ((𝜑𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝐴)
Assertion
Ref Expression
ballss3 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑃   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑋(𝑥)

Proof of Theorem ballss3
StepHypRef Expression
1 ballss3.y . . 3 𝑥𝜑
2 simpl 482 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝜑)
3 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
4 ballss3.d . . . . . . . . 9 (𝜑𝐷 ∈ (PsMet‘𝑋))
5 ballss3.p . . . . . . . . 9 (𝜑𝑃𝑋)
6 ballss3.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
7 elblps 24413 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
84, 5, 6, 7syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
98adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
103, 9mpbid 232 . . . . . 6 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
1110simpld 494 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝑋)
1210simprd 495 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅)
13 ballss3.a . . . . 5 ((𝜑𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝐴)
142, 11, 12, 13syl3anc 1370 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝐴)
1514ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥𝐴))
161, 15ralrimi 3255 . 2 (𝜑 → ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥𝐴)
17 dfss3 3984 . 2 ((𝑃(ball‘𝐷)𝑅) ⊆ 𝐴 ↔ ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥𝐴)
1816, 17sylibr 234 1 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wnf 1780  wcel 2106  wral 3059  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  *cxr 11292   < clt 11293  PsMetcpsmet 21366  ballcbl 21369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-xr 11297  df-psmet 21374  df-bl 21377
This theorem is referenced by:  ioorrnopnlem  46260
  Copyright terms: Public domain W3C validator