![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballss3 | Structured version Visualization version GIF version |
Description: A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
ballss3.y | β’ β²π₯π |
ballss3.d | β’ (π β π· β (PsMetβπ)) |
ballss3.p | β’ (π β π β π) |
ballss3.r | β’ (π β π β β*) |
ballss3.a | β’ ((π β§ π₯ β π β§ (ππ·π₯) < π ) β π₯ β π΄) |
Ref | Expression |
---|---|
ballss3 | β’ (π β (π(ballβπ·)π ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballss3.y | . . 3 β’ β²π₯π | |
2 | simpl 482 | . . . . 5 β’ ((π β§ π₯ β (π(ballβπ·)π )) β π) | |
3 | simpr 484 | . . . . . . 7 β’ ((π β§ π₯ β (π(ballβπ·)π )) β π₯ β (π(ballβπ·)π )) | |
4 | ballss3.d | . . . . . . . . 9 β’ (π β π· β (PsMetβπ)) | |
5 | ballss3.p | . . . . . . . . 9 β’ (π β π β π) | |
6 | ballss3.r | . . . . . . . . 9 β’ (π β π β β*) | |
7 | elblps 24203 | . . . . . . . . 9 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β (π₯ β (π(ballβπ·)π ) β (π₯ β π β§ (ππ·π₯) < π ))) | |
8 | 4, 5, 6, 7 | syl3anc 1368 | . . . . . . . 8 β’ (π β (π₯ β (π(ballβπ·)π ) β (π₯ β π β§ (ππ·π₯) < π ))) |
9 | 8 | adantr 480 | . . . . . . 7 β’ ((π β§ π₯ β (π(ballβπ·)π )) β (π₯ β (π(ballβπ·)π ) β (π₯ β π β§ (ππ·π₯) < π ))) |
10 | 3, 9 | mpbid 231 | . . . . . 6 β’ ((π β§ π₯ β (π(ballβπ·)π )) β (π₯ β π β§ (ππ·π₯) < π )) |
11 | 10 | simpld 494 | . . . . 5 β’ ((π β§ π₯ β (π(ballβπ·)π )) β π₯ β π) |
12 | 10 | simprd 495 | . . . . 5 β’ ((π β§ π₯ β (π(ballβπ·)π )) β (ππ·π₯) < π ) |
13 | ballss3.a | . . . . 5 β’ ((π β§ π₯ β π β§ (ππ·π₯) < π ) β π₯ β π΄) | |
14 | 2, 11, 12, 13 | syl3anc 1368 | . . . 4 β’ ((π β§ π₯ β (π(ballβπ·)π )) β π₯ β π΄) |
15 | 14 | ex 412 | . . 3 β’ (π β (π₯ β (π(ballβπ·)π ) β π₯ β π΄)) |
16 | 1, 15 | ralrimi 3246 | . 2 β’ (π β βπ₯ β (π(ballβπ·)π )π₯ β π΄) |
17 | dfss3 3962 | . 2 β’ ((π(ballβπ·)π ) β π΄ β βπ₯ β (π(ballβπ·)π )π₯ β π΄) | |
18 | 16, 17 | sylibr 233 | 1 β’ (π β (π(ballβπ·)π ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 β²wnf 1777 β wcel 2098 βwral 3053 β wss 3940 class class class wbr 5138 βcfv 6533 (class class class)co 7401 β*cxr 11243 < clt 11244 PsMetcpsmet 21207 ballcbl 21210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8817 df-xr 11248 df-psmet 21215 df-bl 21218 |
This theorem is referenced by: ioorrnopnlem 45471 |
Copyright terms: Public domain | W3C validator |