| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballss3 | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| ballss3.y | ⊢ Ⅎ𝑥𝜑 |
| ballss3.d | ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) |
| ballss3.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| ballss3.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| ballss3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| ballss3 | ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballss3.y | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝜑) | |
| 3 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) | |
| 4 | ballss3.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) | |
| 5 | ballss3.p | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
| 6 | ballss3.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 7 | elblps 24251 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) | |
| 8 | 4, 5, 6, 7 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
| 10 | 3, 9 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) |
| 11 | 10 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ 𝑋) |
| 12 | 10 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅) |
| 13 | ballss3.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) | |
| 14 | 2, 11, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ 𝐴) |
| 15 | 14 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ 𝐴)) |
| 16 | 1, 15 | ralrimi 3233 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥 ∈ 𝐴) |
| 17 | dfss3 3932 | . 2 ⊢ ((𝑃(ball‘𝐷)𝑅) ⊆ 𝐴 ↔ ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥 ∈ 𝐴) | |
| 18 | 16, 17 | sylibr 234 | 1 ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝ*cxr 11183 < clt 11184 PsMetcpsmet 21224 ballcbl 21227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-xr 11188 df-psmet 21232 df-bl 21235 |
| This theorem is referenced by: ioorrnopnlem 46275 |
| Copyright terms: Public domain | W3C validator |