| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballss3 | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| ballss3.y | ⊢ Ⅎ𝑥𝜑 |
| ballss3.d | ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) |
| ballss3.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| ballss3.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| ballss3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| ballss3 | ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballss3.y | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝜑) | |
| 3 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) | |
| 4 | ballss3.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) | |
| 5 | ballss3.p | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
| 6 | ballss3.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 7 | elblps 24398 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) | |
| 8 | 4, 5, 6, 7 | syl3anc 1372 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
| 10 | 3, 9 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) |
| 11 | 10 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ 𝑋) |
| 12 | 10 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅) |
| 13 | ballss3.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) | |
| 14 | 2, 11, 12, 13 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ 𝐴) |
| 15 | 14 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ 𝐴)) |
| 16 | 1, 15 | ralrimi 3256 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥 ∈ 𝐴) |
| 17 | dfss3 3971 | . 2 ⊢ ((𝑃(ball‘𝐷)𝑅) ⊆ 𝐴 ↔ ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥 ∈ 𝐴) | |
| 18 | 16, 17 | sylibr 234 | 1 ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1782 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℝ*cxr 11295 < clt 11296 PsMetcpsmet 21349 ballcbl 21352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 df-xr 11300 df-psmet 21357 df-bl 21360 |
| This theorem is referenced by: ioorrnopnlem 46324 |
| Copyright terms: Public domain | W3C validator |