Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballss3 Structured version   Visualization version   GIF version

Theorem ballss3 40215
Description: A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ballss3.y 𝑥𝜑
ballss3.d (𝜑𝐷 ∈ (PsMet‘𝑋))
ballss3.p (𝜑𝑃𝑋)
ballss3.r (𝜑𝑅 ∈ ℝ*)
ballss3.a ((𝜑𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝐴)
Assertion
Ref Expression
ballss3 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑃   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑋(𝑥)

Proof of Theorem ballss3
StepHypRef Expression
1 ballss3.y . . 3 𝑥𝜑
2 simpl 476 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝜑)
3 simpr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
4 ballss3.d . . . . . . . . 9 (𝜑𝐷 ∈ (PsMet‘𝑋))
5 ballss3.p . . . . . . . . 9 (𝜑𝑃𝑋)
6 ballss3.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
7 elblps 22611 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
84, 5, 6, 7syl3anc 1439 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
98adantr 474 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
103, 9mpbid 224 . . . . . 6 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
1110simpld 490 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝑋)
1210simprd 491 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅)
13 ballss3.a . . . . 5 ((𝜑𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝐴)
142, 11, 12, 13syl3anc 1439 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝐴)
1514ex 403 . . 3 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥𝐴))
161, 15ralrimi 3139 . 2 (𝜑 → ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥𝐴)
17 dfss3 3810 . 2 ((𝑃(ball‘𝐷)𝑅) ⊆ 𝐴 ↔ ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥𝐴)
1816, 17sylibr 226 1 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071  wnf 1827  wcel 2107  wral 3090  wss 3792   class class class wbr 4888  cfv 6137  (class class class)co 6924  *cxr 10412   < clt 10413  PsMetcpsmet 20137  ballcbl 20140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-map 8144  df-xr 10417  df-psmet 20145  df-bl 20148
This theorem is referenced by:  ioorrnopnlem  41462
  Copyright terms: Public domain W3C validator