Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicclem Structured version   Visualization version   GIF version

Theorem iinhoiicclem 46671
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iinhoiicclem.k 𝑘𝜑
iinhoiicclem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iinhoiicclem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
iinhoiicclem.f (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
Assertion
Ref Expression
iinhoiicclem (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicclem
StepHypRef Expression
1 iinhoiicclem.f . . . 4 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
21elexd 3471 . . 3 (𝜑𝐹 ∈ V)
3 1nn 12197 . . . . . . . . 9 1 ∈ ℕ
43a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
5 iinhoiicclem.k . . . . . . . . 9 𝑘𝜑
6 iinhoiicclem.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
7 iinhoiicclem.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
8 peano2re 11347 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ)
109rexrd 11224 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ*)
11 icossre 13389 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ*) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
126, 10, 11syl2anc 584 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
135, 12ixpssixp 45086 . . . . . . . 8 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ)
14 oveq2 7395 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
15 1div1e1 11873 . . . . . . . . . . . . . . 15 (1 / 1) = 1
1615a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 1) = 1)
1714, 16eqtrd 2764 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = 1)
1817oveq2d 7403 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + 1))
1918oveq2d 7403 . . . . . . . . . . 11 (𝑛 = 1 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + 1)))
2019ixpeq2dv 8886 . . . . . . . . . 10 (𝑛 = 1 → X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
2120sseq1d 3978 . . . . . . . . 9 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ))
2221rspcev 3588 . . . . . . . 8 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
234, 13, 22syl2anc 584 . . . . . . 7 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
24 iinss 5020 . . . . . . 7 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2523, 24syl 17 . . . . . 6 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2625, 1sseldd 3947 . . . . 5 (𝜑𝐹X𝑘𝑋 ℝ)
27 elixpconstg 45083 . . . . . 6 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
281, 27syl 17 . . . . 5 (𝜑 → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
2926, 28mpbid 232 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
3029ffnd 6689 . . 3 (𝜑𝐹 Fn 𝑋)
3129ffvelcdmda 7056 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
326rexrd 11224 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
33 ssid 3969 . . . . . . . . . . . . 13 X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))
3433a1i 11 . . . . . . . . . . . 12 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3520sseq1d 3978 . . . . . . . . . . . . 13 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))))
3635rspcev 3588 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
374, 34, 36syl2anc 584 . . . . . . . . . . 11 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
38 iinss 5020 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3937, 38syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4039, 1sseldd 3947 . . . . . . . . 9 (𝜑𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4140adantr 480 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
42 simpr 484 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
43 fvixp2 45193 . . . . . . . 8 ((𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
4441, 42, 43syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
45 icogelb 13357 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1))) → 𝐴 ≤ (𝐹𝑘))
4632, 10, 44, 45syl3anc 1373 . . . . . 6 ((𝜑𝑘𝑋) → 𝐴 ≤ (𝐹𝑘))
4731adantr 480 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
487adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
49 nnrecre 12228 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5049adantl 481 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5148, 50readdcld 11203 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5232adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
53 ressxr 11218 . . . . . . . . . . 11 ℝ ⊆ ℝ*
5453, 51sselid 3944 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
55 eliin 4960 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
562, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
571, 56mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
5857r19.21bi 3229 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
59 elixp2 8874 . . . . . . . . . . . . . 14 (𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6058, 59sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6160simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6261r19.21bi 3229 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6362an32s 652 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
64 icoltub 45506 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6552, 54, 63, 64syl3anc 1373 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6647, 51, 65ltled 11322 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
6766ralrimiva 3125 . . . . . . 7 ((𝜑𝑘𝑋) → ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
68 nfv 1914 . . . . . . . 8 𝑛(𝜑𝑘𝑋)
6953, 31sselid 3944 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7068, 69, 7xrralrecnnle 45379 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛))))
7167, 70mpbird 257 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ≤ 𝐵)
726, 7, 31, 46, 71eliccd 45502 . . . . 5 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,]𝐵))
7372ex 412 . . . 4 (𝜑 → (𝑘𝑋 → (𝐹𝑘) ∈ (𝐴[,]𝐵)))
745, 73ralrimi 3235 . . 3 (𝜑 → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵))
752, 30, 743jca 1128 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
76 elixp2 8874 . 2 (𝐹X𝑘𝑋 (𝐴[,]𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
7775, 76sylibr 234 1 (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914   ciin 4956   class class class wbr 5107   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Xcixp 8870  cr 11067  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  cn 12186  [,)cico 13308  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ico 13312  df-icc 13313  df-fl 13754
This theorem is referenced by:  iinhoiicc  46672
  Copyright terms: Public domain W3C validator