Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicclem Structured version   Visualization version   GIF version

Theorem iinhoiicclem 43309
 Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iinhoiicclem.k 𝑘𝜑
iinhoiicclem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iinhoiicclem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
iinhoiicclem.f (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
Assertion
Ref Expression
iinhoiicclem (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicclem
StepHypRef Expression
1 iinhoiicclem.f . . . 4 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
21elexd 3464 . . 3 (𝜑𝐹 ∈ V)
3 1nn 11640 . . . . . . . . 9 1 ∈ ℕ
43a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
5 iinhoiicclem.k . . . . . . . . 9 𝑘𝜑
6 iinhoiicclem.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
7 iinhoiicclem.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
8 peano2re 10806 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ)
109rexrd 10684 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ*)
11 icossre 12810 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ*) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
126, 10, 11syl2anc 587 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
135, 12ixpssixp 41725 . . . . . . . 8 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ)
14 oveq2 7147 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
15 1div1e1 11323 . . . . . . . . . . . . . . 15 (1 / 1) = 1
1615a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 1) = 1)
1714, 16eqtrd 2836 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = 1)
1817oveq2d 7155 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + 1))
1918oveq2d 7155 . . . . . . . . . . 11 (𝑛 = 1 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + 1)))
2019ixpeq2dv 8464 . . . . . . . . . 10 (𝑛 = 1 → X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
2120sseq1d 3949 . . . . . . . . 9 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ))
2221rspcev 3574 . . . . . . . 8 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
234, 13, 22syl2anc 587 . . . . . . 7 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
24 iinss 4946 . . . . . . 7 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2523, 24syl 17 . . . . . 6 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2625, 1sseldd 3919 . . . . 5 (𝜑𝐹X𝑘𝑋 ℝ)
27 elixpconstg 41722 . . . . . 6 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
281, 27syl 17 . . . . 5 (𝜑 → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
2926, 28mpbid 235 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
3029ffnd 6492 . . 3 (𝜑𝐹 Fn 𝑋)
3129ffvelrnda 6832 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
326rexrd 10684 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
33 ssid 3940 . . . . . . . . . . . . 13 X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))
3433a1i 11 . . . . . . . . . . . 12 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3520sseq1d 3949 . . . . . . . . . . . . 13 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))))
3635rspcev 3574 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
374, 34, 36syl2anc 587 . . . . . . . . . . 11 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
38 iinss 4946 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3937, 38syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4039, 1sseldd 3919 . . . . . . . . 9 (𝜑𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4140adantr 484 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
42 simpr 488 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
43 fvixp2 41824 . . . . . . . 8 ((𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
4441, 42, 43syl2anc 587 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
45 icogelb 12780 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1))) → 𝐴 ≤ (𝐹𝑘))
4632, 10, 44, 45syl3anc 1368 . . . . . 6 ((𝜑𝑘𝑋) → 𝐴 ≤ (𝐹𝑘))
4731adantr 484 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
487adantr 484 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
49 nnrecre 11671 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5049adantl 485 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5148, 50readdcld 10663 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5232adantr 484 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
53 ressxr 10678 . . . . . . . . . . 11 ℝ ⊆ ℝ*
5453, 51sseldi 3916 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
55 eliin 4889 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
562, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
571, 56mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
5857r19.21bi 3176 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
59 elixp2 8452 . . . . . . . . . . . . . 14 (𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6058, 59sylib 221 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6160simp3d 1141 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6261r19.21bi 3176 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6362an32s 651 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
64 icoltub 42142 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6552, 54, 63, 64syl3anc 1368 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6647, 51, 65ltled 10781 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
6766ralrimiva 3152 . . . . . . 7 ((𝜑𝑘𝑋) → ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
68 nfv 1915 . . . . . . . 8 𝑛(𝜑𝑘𝑋)
6953, 31sseldi 3916 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7068, 69, 7xrralrecnnle 42014 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛))))
7167, 70mpbird 260 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ≤ 𝐵)
726, 7, 31, 46, 71eliccd 42138 . . . . 5 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,]𝐵))
7372ex 416 . . . 4 (𝜑 → (𝑘𝑋 → (𝐹𝑘) ∈ (𝐴[,]𝐵)))
745, 73ralrimi 3183 . . 3 (𝜑 → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵))
752, 30, 743jca 1125 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
76 elixp2 8452 . 2 (𝐹X𝑘𝑋 (𝐴[,]𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
7775, 76sylibr 237 1 (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  Vcvv 3444   ⊆ wss 3884  ∩ ciin 4885   class class class wbr 5033   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  Xcixp 8448  ℝcr 10529  1c1 10531   + caddc 10533  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   / cdiv 11290  ℕcn 11629  [,)cico 12732  [,]cicc 12733 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ico 12736  df-icc 12737  df-fl 13161 This theorem is referenced by:  iinhoiicc  43310
 Copyright terms: Public domain W3C validator