Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicclem Structured version   Visualization version   GIF version

Theorem iinhoiicclem 42387
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iinhoiicclem.k 𝑘𝜑
iinhoiicclem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iinhoiicclem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
iinhoiicclem.f (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
Assertion
Ref Expression
iinhoiicclem (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicclem
StepHypRef Expression
1 iinhoiicclem.f . . . 4 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
21elexd 3435 . . 3 (𝜑𝐹 ∈ V)
3 1nn 11454 . . . . . . . . 9 1 ∈ ℕ
43a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
5 iinhoiicclem.k . . . . . . . . 9 𝑘𝜑
6 iinhoiicclem.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
7 iinhoiicclem.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
8 peano2re 10615 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ)
109rexrd 10492 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ*)
11 icossre 12636 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ*) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
126, 10, 11syl2anc 576 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
135, 12ixpssixp 40780 . . . . . . . 8 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ)
14 oveq2 6986 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
15 1div1e1 11133 . . . . . . . . . . . . . . 15 (1 / 1) = 1
1615a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 1) = 1)
1714, 16eqtrd 2814 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = 1)
1817oveq2d 6994 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + 1))
1918oveq2d 6994 . . . . . . . . . . 11 (𝑛 = 1 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + 1)))
2019ixpeq2dv 8277 . . . . . . . . . 10 (𝑛 = 1 → X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
2120sseq1d 3890 . . . . . . . . 9 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ))
2221rspcev 3535 . . . . . . . 8 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
234, 13, 22syl2anc 576 . . . . . . 7 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
24 iinss 4847 . . . . . . 7 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2523, 24syl 17 . . . . . 6 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2625, 1sseldd 3861 . . . . 5 (𝜑𝐹X𝑘𝑋 ℝ)
27 elixpconstg 40777 . . . . . 6 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
281, 27syl 17 . . . . 5 (𝜑 → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
2926, 28mpbid 224 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
3029ffnd 6347 . . 3 (𝜑𝐹 Fn 𝑋)
3129ffvelrnda 6678 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
326rexrd 10492 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
33 ssid 3881 . . . . . . . . . . . . 13 X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))
3433a1i 11 . . . . . . . . . . . 12 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3520sseq1d 3890 . . . . . . . . . . . . 13 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))))
3635rspcev 3535 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
374, 34, 36syl2anc 576 . . . . . . . . . . 11 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
38 iinss 4847 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3937, 38syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4039, 1sseldd 3861 . . . . . . . . 9 (𝜑𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4140adantr 473 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
42 simpr 477 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
43 fvixp2 40887 . . . . . . . 8 ((𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
4441, 42, 43syl2anc 576 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
45 icogelb 12607 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1))) → 𝐴 ≤ (𝐹𝑘))
4632, 10, 44, 45syl3anc 1351 . . . . . 6 ((𝜑𝑘𝑋) → 𝐴 ≤ (𝐹𝑘))
4731adantr 473 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
487adantr 473 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
49 nnrecre 11485 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5049adantl 474 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5148, 50readdcld 10471 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5232adantr 473 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
53 ressxr 10486 . . . . . . . . . . 11 ℝ ⊆ ℝ*
5453, 51sseldi 3858 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
55 eliin 4798 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
562, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
571, 56mpbid 224 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
5857r19.21bi 3158 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
59 elixp2 8265 . . . . . . . . . . . . . 14 (𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6058, 59sylib 210 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6160simp3d 1124 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6261r19.21bi 3158 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6362an32s 639 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
64 icoltub 41216 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6552, 54, 63, 64syl3anc 1351 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6647, 51, 65ltled 10590 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
6766ralrimiva 3132 . . . . . . 7 ((𝜑𝑘𝑋) → ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
68 nfv 1873 . . . . . . . 8 𝑛(𝜑𝑘𝑋)
6953, 31sseldi 3858 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7068, 69, 7xrralrecnnle 41084 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛))))
7167, 70mpbird 249 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ≤ 𝐵)
726, 7, 31, 46, 71eliccd 41211 . . . . 5 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,]𝐵))
7372ex 405 . . . 4 (𝜑 → (𝑘𝑋 → (𝐹𝑘) ∈ (𝐴[,]𝐵)))
745, 73ralrimi 3166 . . 3 (𝜑 → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵))
752, 30, 743jca 1108 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
76 elixp2 8265 . 2 (𝐹X𝑘𝑋 (𝐴[,]𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
7775, 76sylibr 226 1 (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wnf 1746  wcel 2050  wral 3088  wrex 3089  Vcvv 3415  wss 3831   ciin 4794   class class class wbr 4930   Fn wfn 6185  wf 6186  cfv 6190  (class class class)co 6978  Xcixp 8261  cr 10336  1c1 10338   + caddc 10340  *cxr 10475   < clt 10476  cle 10477   / cdiv 11100  cn 11441  [,)cico 12559  [,]cicc 12560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-sup 8703  df-inf 8704  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-q 12166  df-rp 12208  df-ico 12563  df-icc 12564  df-fl 12980
This theorem is referenced by:  iinhoiicc  42388
  Copyright terms: Public domain W3C validator