Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicclem Structured version   Visualization version   GIF version

Theorem iinhoiicclem 44904
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iinhoiicclem.k 𝑘𝜑
iinhoiicclem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iinhoiicclem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
iinhoiicclem.f (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
Assertion
Ref Expression
iinhoiicclem (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicclem
StepHypRef Expression
1 iinhoiicclem.f . . . 4 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
21elexd 3465 . . 3 (𝜑𝐹 ∈ V)
3 1nn 12164 . . . . . . . . 9 1 ∈ ℕ
43a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
5 iinhoiicclem.k . . . . . . . . 9 𝑘𝜑
6 iinhoiicclem.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
7 iinhoiicclem.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
8 peano2re 11328 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ)
109rexrd 11205 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ*)
11 icossre 13345 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ*) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
126, 10, 11syl2anc 584 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
135, 12ixpssixp 43292 . . . . . . . 8 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ)
14 oveq2 7365 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
15 1div1e1 11845 . . . . . . . . . . . . . . 15 (1 / 1) = 1
1615a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 1) = 1)
1714, 16eqtrd 2776 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = 1)
1817oveq2d 7373 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + 1))
1918oveq2d 7373 . . . . . . . . . . 11 (𝑛 = 1 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + 1)))
2019ixpeq2dv 8851 . . . . . . . . . 10 (𝑛 = 1 → X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
2120sseq1d 3975 . . . . . . . . 9 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ))
2221rspcev 3581 . . . . . . . 8 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
234, 13, 22syl2anc 584 . . . . . . 7 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
24 iinss 5016 . . . . . . 7 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2523, 24syl 17 . . . . . 6 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2625, 1sseldd 3945 . . . . 5 (𝜑𝐹X𝑘𝑋 ℝ)
27 elixpconstg 43289 . . . . . 6 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
281, 27syl 17 . . . . 5 (𝜑 → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
2926, 28mpbid 231 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
3029ffnd 6669 . . 3 (𝜑𝐹 Fn 𝑋)
3129ffvelcdmda 7035 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
326rexrd 11205 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
33 ssid 3966 . . . . . . . . . . . . 13 X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))
3433a1i 11 . . . . . . . . . . . 12 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3520sseq1d 3975 . . . . . . . . . . . . 13 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))))
3635rspcev 3581 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
374, 34, 36syl2anc 584 . . . . . . . . . . 11 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
38 iinss 5016 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3937, 38syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4039, 1sseldd 3945 . . . . . . . . 9 (𝜑𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4140adantr 481 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
42 simpr 485 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
43 fvixp2 43409 . . . . . . . 8 ((𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
4441, 42, 43syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
45 icogelb 13315 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1))) → 𝐴 ≤ (𝐹𝑘))
4632, 10, 44, 45syl3anc 1371 . . . . . 6 ((𝜑𝑘𝑋) → 𝐴 ≤ (𝐹𝑘))
4731adantr 481 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
487adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
49 nnrecre 12195 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5049adantl 482 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5148, 50readdcld 11184 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5232adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
53 ressxr 11199 . . . . . . . . . . 11 ℝ ⊆ ℝ*
5453, 51sselid 3942 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
55 eliin 4959 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
562, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
571, 56mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
5857r19.21bi 3234 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
59 elixp2 8839 . . . . . . . . . . . . . 14 (𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6058, 59sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6160simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6261r19.21bi 3234 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6362an32s 650 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
64 icoltub 43736 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6552, 54, 63, 64syl3anc 1371 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6647, 51, 65ltled 11303 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
6766ralrimiva 3143 . . . . . . 7 ((𝜑𝑘𝑋) → ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
68 nfv 1917 . . . . . . . 8 𝑛(𝜑𝑘𝑋)
6953, 31sselid 3942 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7068, 69, 7xrralrecnnle 43607 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛))))
7167, 70mpbird 256 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ≤ 𝐵)
726, 7, 31, 46, 71eliccd 43732 . . . . 5 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,]𝐵))
7372ex 413 . . . 4 (𝜑 → (𝑘𝑋 → (𝐹𝑘) ∈ (𝐴[,]𝐵)))
745, 73ralrimi 3240 . . 3 (𝜑 → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵))
752, 30, 743jca 1128 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
76 elixp2 8839 . 2 (𝐹X𝑘𝑋 (𝐴[,]𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
7775, 76sylibr 233 1 (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910   ciin 4955   class class class wbr 5105   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Xcixp 8835  cr 11050  1c1 11052   + caddc 11054  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  cn 12153  [,)cico 13266  [,]cicc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ico 13270  df-icc 13271  df-fl 13697
This theorem is referenced by:  iinhoiicc  44905
  Copyright terms: Public domain W3C validator