Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem2 Structured version   Visualization version   GIF version

Theorem vonioolem2 46677
Description: The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem2.x (𝜑𝑋 ∈ Fin)
vonioolem2.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem2.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem2.n (𝜑𝑋 ≠ ∅)
vonioolem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioolem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
vonioolem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonioolem2
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioolem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
21vonmea 46570 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
3 1zzd 12628 . . . 4 (𝜑 → 1 ∈ ℤ)
4 nnuz 12900 . . . 4 ℕ = (ℤ‘1)
51adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
6 eqid 2736 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
7 vonioolem2.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
98ffvelcdmda 7079 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
10 nnrecre 12287 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11readdcld 11269 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
1312fmpttd 7110 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
14 vonioolem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1514a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
161mptexd 7221 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1815, 17fvmpt2d 7004 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1918feq1d 6695 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2013, 19mpbird 257 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
21 vonioolem2.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
2221adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
235, 6, 20, 22hoimbl 46627 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
24 vonioolem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
2523, 24fmptd 7109 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
26 nfv 1914 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
27 oveq2 7418 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
2827oveq2d 7426 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐴𝑘) + (1 / 𝑛)) = ((𝐴𝑘) + (1 / 𝑚)))
2928mpteq2dv 5220 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3029cbvmptv 5230 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3114, 30eqtri 2759 . . . . . . . . . . 11 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
32 oveq2 7418 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
3332oveq2d 7426 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
3433mpteq2dv 5220 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3635peano2nnd 12262 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
375mptexd 7221 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))) ∈ V)
3831, 34, 36, 37fvmptd3 7014 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
39 ovexd 7445 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ V)
4038, 39fvmpt2d 7004 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
41 1red 11241 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
42 nnre 12252 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4342, 41readdcld 11269 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
44 peano2nn 12257 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
45 nnne0 12279 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4741, 43, 46redivcld 12074 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4847ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
499, 48readdcld 11269 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ ℝ)
5040, 49eqeltrd 2835 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ)
5150rexrd 11290 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ*)
52 ressxr 11284 . . . . . . . . 9 ℝ ⊆ ℝ*
5321ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
5452, 53sselid 3961 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5554adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5642ltp1d 12177 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
57 nnrp 13025 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5844nnrpd 13054 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
5957, 58ltrecd 13074 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
6056, 59mpbid 232 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
6147, 10, 60ltled 11388 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6261ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6348, 11, 9, 62leadd2dd 11857 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛)))
64 ovexd 7445 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
6518, 64fvmpt2d 7004 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
6640, 65breq12d 5137 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛))))
6763, 66mpbird 257 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
6853adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
69 eqidd 2737 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) = (𝐵𝑘))
7068, 69eqled 11343 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
71 icossico 13438 . . . . . . 7 (((((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7251, 55, 67, 70, 71syl22anc 838 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7326, 72ixpssixp 45083 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7424a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
7523elexd 3488 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
7674, 75fvmpt2d 7004 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
77 fveq2 6881 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7877fveq1d 6883 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7978oveq1d 7425 . . . . . . . . . 10 (𝑛 = 𝑚 → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8079ixpeq2dv 8932 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8180cbvmptv 5230 . . . . . . . 8 (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8224, 81eqtri 2759 . . . . . . 7 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
83 fveq2 6881 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8483fveq1d 6883 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8584oveq1d 7425 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
8685ixpeq2dv 8932 . . . . . . 7 (𝑚 = (𝑛 + 1) → X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
87 ovex 7443 . . . . . . . . . 10 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
8887rgenw 3056 . . . . . . . . 9 𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
89 ixpexg 8941 . . . . . . . . 9 (∀𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9088, 89ax-mp 5 . . . . . . . 8 X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
9190a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9282, 86, 36, 91fvmptd3 7014 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
9376, 92sseq12d 3997 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)) ↔ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘))))
9473, 93mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)))
951, 6, 7, 21hoimbl 46627 . . . . 5 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
96 nfv 1914 . . . . . 6 𝑘𝜑
977ffvelcdmda 7079 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
9896, 1, 97, 53vonhoire 46668 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
99 vonioolem2.i . . . . . . 7 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
10099a1i 11 . . . . . 6 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
101 nftru 1804 . . . . . . . . 9 𝑘
102 ioossico 13460 . . . . . . . . . 10 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))
103102a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘𝑋) → ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
104101, 103ixpssixp 45083 . . . . . . . 8 (⊤ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
105104mptru 1547 . . . . . . 7 X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
106105a1i 11 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
107100, 106eqsstrd 3998 . . . . 5 (𝜑𝐼X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
10852a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
1097, 108fssd 6728 . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ*)
11021, 108fssd 6728 . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ*)
1111, 6, 109, 110ioovonmbl 46673 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
11299, 111eqeltrid 2839 . . . . 5 (𝜑𝐼 ∈ dom (voln‘𝑋))
1132, 95, 98, 107, 112meassre 46473 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) ∈ ℝ)
1142adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (voln‘𝑋) ∈ Meas)
11576, 23eqeltrd 2835 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ dom (voln‘𝑋))
116112adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐼 ∈ dom (voln‘𝑋))
11752, 97sselid 3961 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
118117adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
11957rpreccld 13066 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
120119ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
1219, 120ltaddrpd 13089 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)))
122 icossioo 13462 . . . . . . . 8 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
123118, 55, 121, 70, 122syl22anc 838 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
12426, 123ixpssixp 45083 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
12565oveq1d 7425 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
126125ixpeq2dva 8931 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12776, 126eqtrd 2771 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12899a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
129127, 128sseq12d 3997 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ 𝐼X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))))
130124, 129mpbird 257 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ 𝐼)
131114, 6, 115, 116, 130meassle 46459 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) ≤ ((voln‘𝑋)‘𝐼))
132 eqid 2736 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1332, 3, 4, 25, 94, 113, 131, 132meaiuninc2 46478 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
13496, 1, 97, 54iunhoiioo 46672 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
135127iuneq2dv 4997 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
136134, 135, 1003eqtr4d 2781 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
137136eqcomd 2742 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
138137fveq2d 6885 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
139138eqcomd 2742 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
140133, 139breqtrd 5150 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
141 2fveq3 6886 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
142141cbvmptv 5230 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
143142a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
144 vonioolem2.n . . . 4 (𝜑𝑋 ≠ ∅)
145 vonioolem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
146142eqcomi 2745 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
147 eqcom 2743 . . . . . . . . . 10 (𝑛 = 𝑚𝑚 = 𝑛)
148147imbi1i 349 . . . . . . . . 9 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)))
149 eqcom 2743 . . . . . . . . . 10 (((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘) ↔ ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
150149imbi2i 336 . . . . . . . . 9 ((𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
151148, 150bitri 275 . . . . . . . 8 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
15278, 151mpbi 230 . . . . . . 7 (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
153152oveq2d 7426 . . . . . 6 (𝑚 = 𝑛 → ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
154153prodeq2ad 45588 . . . . 5 (𝑚 = 𝑛 → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
155154cbvmptv 5230 . . . 4 (𝑚 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
156 eqid 2736 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
157 eqid 2736 . . . 4 ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
158 fveq2 6881 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
159 fveq2 6881 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
160158, 159oveq12d 7428 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
161160cbvmptv 5230 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
162161rneqi 5922 . . . . . . . . 9 ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
163162infeq1i 9496 . . . . . . . 8 inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
164163oveq2i 7421 . . . . . . 7 (1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < )) = (1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))
165164fveq2i 6884 . . . . . 6 (⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) = (⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )))
166165oveq1i 7420 . . . . 5 ((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
167166fveq2i 6884 . . . 4 (ℤ‘((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1)) = (ℤ‘((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1))
1681, 7, 21, 144, 145, 14, 24, 146, 155, 156, 157, 167vonioolem1 46676 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
169143, 168eqbrtrd 5146 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
170 climuni 15573 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
171140, 169, 170syl2anc 584 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2933  wral 3052  Vcvv 3464  wss 3931  c0 4313   ciun 4972   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  Xcixp 8916  Fincfn 8964  infcinf 9458  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  cuz 12857  +crp 13013  (,)cioo 13367  [,)cico 13369  cfl 13812  cli 15505  cprod 15924  Meascmea 46445  volncvoln 46534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-prod 15925  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-pws 17468  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-field 20697  df-abv 20774  df-staf 20804  df-srng 20805  df-lmod 20824  df-lss 20894  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-refld 21570  df-phl 21591  df-dsmm 21697  df-frlm 21712  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-nm 24526  df-ngp 24527  df-tng 24528  df-nrg 24529  df-nlm 24530  df-cncf 24827  df-clm 25019  df-cph 25125  df-tcph 25126  df-rrx 25342  df-ovol 25422  df-vol 25423  df-salg 46305  df-sumge0 46359  df-mea 46446  df-ome 46486  df-caragen 46488  df-ovoln 46533  df-voln 46535
This theorem is referenced by:  vonioo  46678
  Copyright terms: Public domain W3C validator