Step | Hyp | Ref
| Expression |
1 | | vonioolem2.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | 1 | vonmea 44112 |
. . . 4
⊢ (𝜑 → (voln‘𝑋) ∈ Meas) |
3 | | 1zzd 12351 |
. . . 4
⊢ (𝜑 → 1 ∈
ℤ) |
4 | | nnuz 12621 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
5 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
6 | | eqid 2738 |
. . . . . 6
⊢ dom
(voln‘𝑋) = dom
(voln‘𝑋) |
7 | | vonioolem2.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
8 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ) |
9 | 8 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
10 | | nnrecre 12015 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
11 | 10 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
12 | 9, 11 | readdcld 11004 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘) + (1 / 𝑛)) ∈ ℝ) |
13 | 12 | fmpttd 6989 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ) |
14 | | vonioolem2.c |
. . . . . . . . . 10
⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) |
15 | 14 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛))))) |
16 | 1 | mptexd 7100 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛))) ∈ V) |
17 | 16 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛))) ∈ V) |
18 | 15, 17 | fvmpt2d 6888 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) |
19 | 18 | feq1d 6585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ)) |
20 | 13, 19 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ) |
21 | | vonioolem2.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
22 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ) |
23 | 5, 6, 20, 22 | hoimbl 44169 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) ∈ dom (voln‘𝑋)) |
24 | | vonioolem2.d |
. . . . 5
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) |
25 | 23, 24 | fmptd 6988 |
. . . 4
⊢ (𝜑 → 𝐷:ℕ⟶dom (voln‘𝑋)) |
26 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑛 ∈ ℕ) |
27 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) |
28 | 27 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ((𝐴‘𝑘) + (1 / 𝑛)) = ((𝐴‘𝑘) + (1 / 𝑚))) |
29 | 28 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛))) = (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑚)))) |
30 | 29 | cbvmptv 5187 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑚)))) |
31 | 14, 30 | eqtri 2766 |
. . . . . . . . . . 11
⊢ 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑚)))) |
32 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1))) |
33 | 32 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 + 1) → ((𝐴‘𝑘) + (1 / 𝑚)) = ((𝐴‘𝑘) + (1 / (𝑛 + 1)))) |
34 | 33 | mpteq2dv 5176 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑚))) = (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / (𝑛 + 1))))) |
35 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
36 | 35 | peano2nnd 11990 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
37 | 5 | mptexd 7100 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / (𝑛 + 1)))) ∈ V) |
38 | 31, 34, 36, 37 | fvmptd3 6898 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / (𝑛 + 1))))) |
39 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘) + (1 / (𝑛 + 1))) ∈ V) |
40 | 38, 39 | fvmpt2d 6888 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐴‘𝑘) + (1 / (𝑛 + 1)))) |
41 | | 1red 10976 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ) |
42 | | nnre 11980 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
43 | 42, 41 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℝ) |
44 | | peano2nn 11985 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
45 | | nnne0 12007 |
. . . . . . . . . . . . 13
⊢ ((𝑛 + 1) ∈ ℕ →
(𝑛 + 1) ≠
0) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0) |
47 | 41, 43, 46 | redivcld 11803 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (1 /
(𝑛 + 1)) ∈
ℝ) |
48 | 47 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / (𝑛 + 1)) ∈ ℝ) |
49 | 9, 48 | readdcld 11004 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘) + (1 / (𝑛 + 1))) ∈ ℝ) |
50 | 40, 49 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ) |
51 | 50 | rexrd 11025 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈
ℝ*) |
52 | | ressxr 11019 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
53 | 21 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
54 | 52, 53 | sselid 3919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈
ℝ*) |
55 | 54 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈
ℝ*) |
56 | 42 | ltp1d 11905 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1)) |
57 | | nnrp 12741 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
58 | 44 | nnrpd 12770 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℝ+) |
59 | 57, 58 | ltrecd 12790 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛))) |
60 | 56, 59 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (1 /
(𝑛 + 1)) < (1 / 𝑛)) |
61 | 47, 10, 60 | ltled 11123 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
(𝑛 + 1)) ≤ (1 / 𝑛)) |
62 | 61 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛)) |
63 | 48, 11, 9, 62 | leadd2dd 11590 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴‘𝑘) + (1 / 𝑛))) |
64 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘) + (1 / 𝑛)) ∈ V) |
65 | 18, 64 | fvmpt2d 6888 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) = ((𝐴‘𝑘) + (1 / 𝑛))) |
66 | 40, 65 | breq12d 5087 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶‘𝑛)‘𝑘) ↔ ((𝐴‘𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴‘𝑘) + (1 / 𝑛)))) |
67 | 63, 66 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶‘𝑛)‘𝑘)) |
68 | 53 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
69 | | eqidd 2739 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) = (𝐵‘𝑘)) |
70 | 68, 69 | eqled 11078 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ≤ (𝐵‘𝑘)) |
71 | | icossico 13149 |
. . . . . . 7
⊢
(((((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ* ∧ (𝐵‘𝑘) ∈ ℝ*) ∧ (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶‘𝑛)‘𝑘) ∧ (𝐵‘𝑘) ≤ (𝐵‘𝑘))) → (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘))) |
72 | 51, 55, 67, 70, 71 | syl22anc 836 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘))) |
73 | 26, 72 | ixpssixp 42642 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) ⊆ X𝑘 ∈ 𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘))) |
74 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)))) |
75 | 23 | elexd 3452 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) ∈ V) |
76 | 74, 75 | fvmpt2d 6888 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) |
77 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝐶‘𝑛) = (𝐶‘𝑚)) |
78 | 77 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((𝐶‘𝑛)‘𝑘) = ((𝐶‘𝑚)‘𝑘)) |
79 | 78 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) = (((𝐶‘𝑚)‘𝑘)[,)(𝐵‘𝑘))) |
80 | 79 | ixpeq2dv 8701 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑚)‘𝑘)[,)(𝐵‘𝑘))) |
81 | 80 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘 ∈
𝑋 (((𝐶‘𝑚)‘𝑘)[,)(𝐵‘𝑘))) |
82 | 24, 81 | eqtri 2766 |
. . . . . . 7
⊢ 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘 ∈
𝑋 (((𝐶‘𝑚)‘𝑘)[,)(𝐵‘𝑘))) |
83 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → (𝐶‘𝑚) = (𝐶‘(𝑛 + 1))) |
84 | 83 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → ((𝐶‘𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘)) |
85 | 84 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → (((𝐶‘𝑚)‘𝑘)[,)(𝐵‘𝑘)) = (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘))) |
86 | 85 | ixpeq2dv 8701 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → X𝑘 ∈ 𝑋 (((𝐶‘𝑚)‘𝑘)[,)(𝐵‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘))) |
87 | | ovex 7308 |
. . . . . . . . . 10
⊢ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘)) ∈ V |
88 | 87 | rgenw 3076 |
. . . . . . . . 9
⊢
∀𝑘 ∈
𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘)) ∈ V |
89 | | ixpexg 8710 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘)) ∈ V → X𝑘 ∈
𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘)) ∈ V) |
90 | 88, 89 | ax-mp 5 |
. . . . . . . 8
⊢ X𝑘 ∈
𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘)) ∈ V |
91 | 90 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘)) ∈ V) |
92 | 82, 86, 36, 91 | fvmptd3 6898 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘 ∈ 𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘))) |
93 | 76, 92 | sseq12d 3954 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛) ⊆ (𝐷‘(𝑛 + 1)) ↔ X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) ⊆ X𝑘 ∈ 𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵‘𝑘)))) |
94 | 73, 93 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ⊆ (𝐷‘(𝑛 + 1))) |
95 | 1, 6, 7, 21 | hoimbl 44169 |
. . . . 5
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom (voln‘𝑋)) |
96 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
97 | 7 | ffvelrnda 6961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
98 | 96, 1, 97, 53 | vonhoire 44210 |
. . . . 5
⊢ (𝜑 → ((voln‘𝑋)‘X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
99 | | vonioolem2.i |
. . . . . . 7
⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) |
100 | 99 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘))) |
101 | | nftru 1807 |
. . . . . . . . 9
⊢
Ⅎ𝑘⊤ |
102 | | ioossico 13170 |
. . . . . . . . . 10
⊢ ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⊆ ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
103 | 102 | a1i 11 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ 𝑋) → ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⊆ ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
104 | 101, 103 | ixpssixp 42642 |
. . . . . . . 8
⊢ (⊤
→ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
105 | 104 | mptru 1546 |
. . . . . . 7
⊢ X𝑘 ∈
𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
106 | 105 | a1i 11 |
. . . . . 6
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
107 | 100, 106 | eqsstrd 3959 |
. . . . 5
⊢ (𝜑 → 𝐼 ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
108 | 52 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℝ*) |
109 | 7, 108 | fssd 6618 |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) |
110 | 21, 108 | fssd 6618 |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) |
111 | 1, 6, 109, 110 | ioovonmbl 44215 |
. . . . . 6
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ∈ dom (voln‘𝑋)) |
112 | 99, 111 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ dom (voln‘𝑋)) |
113 | 2, 95, 98, 107, 112 | meassre 44015 |
. . . 4
⊢ (𝜑 → ((voln‘𝑋)‘𝐼) ∈ ℝ) |
114 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (voln‘𝑋) ∈ Meas) |
115 | 76, 23 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ∈ dom (voln‘𝑋)) |
116 | 112 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐼 ∈ dom (voln‘𝑋)) |
117 | 52, 97 | sselid 3919 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈
ℝ*) |
118 | 117 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈
ℝ*) |
119 | 57 | rpreccld 12782 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
120 | 119 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈
ℝ+) |
121 | 9, 120 | ltaddrpd 12805 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < ((𝐴‘𝑘) + (1 / 𝑛))) |
122 | | icossioo 13172 |
. . . . . . . 8
⊢ ((((𝐴‘𝑘) ∈ ℝ* ∧ (𝐵‘𝑘) ∈ ℝ*) ∧ ((𝐴‘𝑘) < ((𝐴‘𝑘) + (1 / 𝑛)) ∧ (𝐵‘𝑘) ≤ (𝐵‘𝑘))) → (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘)) ⊆ ((𝐴‘𝑘)(,)(𝐵‘𝑘))) |
123 | 118, 55, 121, 70, 122 | syl22anc 836 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘)) ⊆ ((𝐴‘𝑘)(,)(𝐵‘𝑘))) |
124 | 26, 123 | ixpssixp 42642 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘))) |
125 | 65 | oveq1d 7290 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) = (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘))) |
126 | 125 | ixpeq2dva 8700 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘))) |
127 | 76, 126 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘))) |
128 | 99 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘))) |
129 | 127, 128 | sseq12d 3954 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛) ⊆ 𝐼 ↔ X𝑘 ∈ 𝑋 (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)))) |
130 | 124, 129 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ⊆ 𝐼) |
131 | 114, 6, 115, 116, 130 | meassle 44001 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷‘𝑛)) ≤ ((voln‘𝑋)‘𝐼)) |
132 | | eqid 2738 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) |
133 | 2, 3, 4, 25, 94, 113, 131, 132 | meaiuninc2 44020 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ((voln‘𝑋)‘∪
𝑛 ∈ ℕ (𝐷‘𝑛))) |
134 | 96, 1, 97, 54 | iunhoiioo 44214 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘))) |
135 | 127 | iuneq2dv 4948 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐷‘𝑛) = ∪ 𝑛 ∈ ℕ X𝑘 ∈
𝑋 (((𝐴‘𝑘) + (1 / 𝑛))[,)(𝐵‘𝑘))) |
136 | 134, 135,
100 | 3eqtr4d 2788 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐷‘𝑛) = 𝐼) |
137 | 136 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐼 = ∪ 𝑛 ∈ ℕ (𝐷‘𝑛)) |
138 | 137 | fveq2d 6778 |
. . . 4
⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∪
𝑛 ∈ ℕ (𝐷‘𝑛))) |
139 | 138 | eqcomd 2744 |
. . 3
⊢ (𝜑 → ((voln‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐷‘𝑛)) = ((voln‘𝑋)‘𝐼)) |
140 | 133, 139 | breqtrd 5100 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ((voln‘𝑋)‘𝐼)) |
141 | | 2fveq3 6779 |
. . . . 5
⊢ (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷‘𝑛)) = ((voln‘𝑋)‘(𝐷‘𝑚))) |
142 | 141 | cbvmptv 5187 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑚))) |
143 | 142 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑚)))) |
144 | | vonioolem2.n |
. . . 4
⊢ (𝜑 → 𝑋 ≠ ∅) |
145 | | vonioolem2.t |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
146 | 142 | eqcomi 2747 |
. . . 4
⊢ (𝑚 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) |
147 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 ↔ 𝑚 = 𝑛) |
148 | 147 | imbi1i 350 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑚 → ((𝐶‘𝑛)‘𝑘) = ((𝐶‘𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶‘𝑛)‘𝑘) = ((𝐶‘𝑚)‘𝑘))) |
149 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (((𝐶‘𝑛)‘𝑘) = ((𝐶‘𝑚)‘𝑘) ↔ ((𝐶‘𝑚)‘𝑘) = ((𝐶‘𝑛)‘𝑘)) |
150 | 149 | imbi2i 336 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑛 → ((𝐶‘𝑛)‘𝑘) = ((𝐶‘𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶‘𝑚)‘𝑘) = ((𝐶‘𝑛)‘𝑘))) |
151 | 148, 150 | bitri 274 |
. . . . . . . 8
⊢ ((𝑛 = 𝑚 → ((𝐶‘𝑛)‘𝑘) = ((𝐶‘𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶‘𝑚)‘𝑘) = ((𝐶‘𝑛)‘𝑘))) |
152 | 78, 151 | mpbi 229 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝐶‘𝑚)‘𝑘) = ((𝐶‘𝑛)‘𝑘)) |
153 | 152 | oveq2d 7291 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝐵‘𝑘) − ((𝐶‘𝑚)‘𝑘)) = ((𝐵‘𝑘) − ((𝐶‘𝑛)‘𝑘))) |
154 | 153 | prodeq2ad 43133 |
. . . . 5
⊢ (𝑚 = 𝑛 → ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − ((𝐶‘𝑚)‘𝑘)) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − ((𝐶‘𝑛)‘𝑘))) |
155 | 154 | cbvmptv 5187 |
. . . 4
⊢ (𝑚 ∈ ℕ ↦
∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − ((𝐶‘𝑚)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − ((𝐶‘𝑛)‘𝑘))) |
156 | | eqid 2738 |
. . . 4
⊢ inf(ran
(𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ) = inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ) |
157 | | eqid 2738 |
. . . 4
⊢
((⌊‘(1 / inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ))) + 1) =
((⌊‘(1 / inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ))) + 1) |
158 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝐵‘𝑗) = (𝐵‘𝑘)) |
159 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝐴‘𝑗) = (𝐴‘𝑘)) |
160 | 158, 159 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝐵‘𝑗) − (𝐴‘𝑗)) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
161 | 160 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) − (𝐴‘𝑗))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))) |
162 | 161 | rneqi 5846 |
. . . . . . . . 9
⊢ ran
(𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) − (𝐴‘𝑗))) = ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))) |
163 | 162 | infeq1i 9237 |
. . . . . . . 8
⊢ inf(ran
(𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) − (𝐴‘𝑗))), ℝ, < ) = inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ) |
164 | 163 | oveq2i 7286 |
. . . . . . 7
⊢ (1 /
inf(ran (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) − (𝐴‘𝑗))), ℝ, < )) = (1 / inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < )) |
165 | 164 | fveq2i 6777 |
. . . . . 6
⊢
(⌊‘(1 / inf(ran (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) − (𝐴‘𝑗))), ℝ, < ))) = (⌊‘(1 /
inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ))) |
166 | 165 | oveq1i 7285 |
. . . . 5
⊢
((⌊‘(1 / inf(ran (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) − (𝐴‘𝑗))), ℝ, < ))) + 1) =
((⌊‘(1 / inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ))) + 1) |
167 | 166 | fveq2i 6777 |
. . . 4
⊢
(ℤ≥‘((⌊‘(1 / inf(ran (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) − (𝐴‘𝑗))), ℝ, < ))) + 1)) =
(ℤ≥‘((⌊‘(1 / inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ))) + 1)) |
168 | 1, 7, 21, 144, 145, 14, 24, 146, 155, 156, 157, 167 | vonioolem1 44218 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑚))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
169 | 143, 168 | eqbrtrd 5096 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
170 | | climuni 15261 |
. 2
⊢ (((𝑛 ∈ ℕ ↦
((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
171 | 140, 169,
170 | syl2anc 584 |
1
⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |