Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem2 Structured version   Visualization version   GIF version

Theorem vonioolem2 41535
Description: The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem2.x (𝜑𝑋 ∈ Fin)
vonioolem2.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem2.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem2.n (𝜑𝑋 ≠ ∅)
vonioolem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioolem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
vonioolem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonioolem2
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioolem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
21vonmea 41428 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
3 1zzd 11655 . . . 4 (𝜑 → 1 ∈ ℤ)
4 nnuz 11923 . . . 4 ℕ = (ℤ‘1)
51adantr 472 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
6 eqid 2765 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
7 vonioolem2.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
87adantr 472 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
98ffvelrnda 6549 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
10 nnrecre 11314 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 718 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11readdcld 10323 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
1312fmpttd 6575 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
14 vonioolem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1514a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
161mptexd 6680 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1716adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1815, 17fvmpt2d 6482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1918feq1d 6208 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2013, 19mpbird 248 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
21 vonioolem2.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
2221adantr 472 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
235, 6, 20, 22hoimbl 41485 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
24 vonioolem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
2523, 24fmptd 6574 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
26 nfv 2009 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
27 oveq2 6850 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
2827oveq2d 6858 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐴𝑘) + (1 / 𝑛)) = ((𝐴𝑘) + (1 / 𝑚)))
2928mpteq2dv 4904 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3029cbvmptv 4909 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3114, 30eqtri 2787 . . . . . . . . . . . 12 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3231a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚)))))
33 oveq2 6850 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
3433oveq2d 6858 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
3534mpteq2dv 4904 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
3635adantl 473 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
37 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3837peano2nnd 11293 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
395mptexd 6680 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))) ∈ V)
4032, 36, 38, 39fvmptd 6477 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
41 ovexd 6876 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ V)
4240, 41fvmpt2d 6482 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
43 1red 10294 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
44 nnre 11282 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4544, 43readdcld 10323 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
46 peano2nn 11288 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
47 nnne0 11310 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4846, 47syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4943, 45, 48redivcld 11107 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
5049ad2antlr 718 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
519, 50readdcld 10323 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ ℝ)
5242, 51eqeltrd 2844 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ)
5352rexrd 10343 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ*)
54 ressxr 10337 . . . . . . . . 9 ℝ ⊆ ℝ*
5521ffvelrnda 6549 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
5654, 55sseldi 3759 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5756adantlr 706 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5844ltp1d 11208 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
59 nnrp 12041 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
6046nnrpd 12068 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
6159, 60ltrecd 12088 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
6258, 61mpbid 223 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
6349, 10, 62ltled 10439 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6463ad2antlr 718 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6550, 11, 9, 64leadd2dd 10896 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛)))
66 ovexd 6876 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
6718, 66fvmpt2d 6482 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
6842, 67breq12d 4822 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛))))
6965, 68mpbird 248 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
7055adantlr 706 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
71 eqidd 2766 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) = (𝐵𝑘))
7270, 71eqled 10394 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
73 icossico 12445 . . . . . . 7 (((((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7453, 57, 69, 72, 73syl22anc 867 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7526, 74ixpssixp 39920 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7624a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
7723elexd 3367 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
7876, 77fvmpt2d 6482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
79 fveq2 6375 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
8079fveq1d 6377 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
8180oveq1d 6857 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8281ixpeq2dv 8129 . . . . . . . . . 10 (𝑛 = 𝑚X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8382cbvmptv 4909 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8424, 83eqtri 2787 . . . . . . . 8 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8584a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘))))
86 fveq2 6375 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8786fveq1d 6377 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8887oveq1d 6857 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
8988ixpeq2dv 8129 . . . . . . . 8 (𝑚 = (𝑛 + 1) → X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
9089adantl 473 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
91 ovex 6874 . . . . . . . . . 10 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
9291rgenw 3071 . . . . . . . . 9 𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
93 ixpexg 8137 . . . . . . . . 9 (∀𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9492, 93ax-mp 5 . . . . . . . 8 X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
9594a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9685, 90, 38, 95fvmptd 6477 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
9778, 96sseq12d 3794 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)) ↔ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘))))
9875, 97mpbird 248 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)))
991, 6, 7, 21hoimbl 41485 . . . . 5 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
100 nfv 2009 . . . . . 6 𝑘𝜑
1017ffvelrnda 6549 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
102100, 1, 101, 55vonhoire 41526 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
103 vonioolem2.i . . . . . . 7 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
104103a1i 11 . . . . . 6 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
105 nftru 1899 . . . . . . . . 9 𝑘
106 ioossico 12465 . . . . . . . . . 10 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))
107106a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘𝑋) → ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
108105, 107ixpssixp 39920 . . . . . . . 8 (⊤ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
109108mptru 1660 . . . . . . 7 X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
110109a1i 11 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
111104, 110eqsstrd 3799 . . . . 5 (𝜑𝐼X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
11254a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
1137, 112fssd 6237 . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ*)
11421, 112fssd 6237 . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ*)
1151, 6, 113, 114ioovonmbl 41531 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
116103, 115syl5eqel 2848 . . . . 5 (𝜑𝐼 ∈ dom (voln‘𝑋))
1172, 99, 102, 111, 116meassre 41331 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) ∈ ℝ)
1182adantr 472 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (voln‘𝑋) ∈ Meas)
11978, 23eqeltrd 2844 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ dom (voln‘𝑋))
120116adantr 472 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐼 ∈ dom (voln‘𝑋))
12154, 101sseldi 3759 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
122121adantlr 706 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
12359rpreccld 12080 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
124123ad2antlr 718 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
1259, 124ltaddrpd 12103 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)))
126 icossioo 12467 . . . . . . . 8 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
127122, 57, 125, 72, 126syl22anc 867 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
12826, 127ixpssixp 39920 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
12967oveq1d 6857 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
130129ixpeq2dva 8128 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
13178, 130eqtrd 2799 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
132103a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
133131, 132sseq12d 3794 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ 𝐼X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))))
134128, 133mpbird 248 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ 𝐼)
135118, 6, 119, 120, 134meassle 41317 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) ≤ ((voln‘𝑋)‘𝐼))
136 eqid 2765 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1372, 3, 4, 25, 98, 117, 135, 136meaiuninc2 41336 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
138100, 1, 101, 56iunhoiioo 41530 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
139131iuneq2dv 4698 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
140138, 139, 1043eqtr4d 2809 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
141140eqcomd 2771 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
142141fveq2d 6379 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
143142eqcomd 2771 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
144137, 143breqtrd 4835 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
145 2fveq3 6380 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
146145cbvmptv 4909 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
147146a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
148 vonioolem2.n . . . 4 (𝜑𝑋 ≠ ∅)
149 vonioolem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
150146eqcomi 2774 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
151 eqcom 2772 . . . . . . . . . 10 (𝑛 = 𝑚𝑚 = 𝑛)
152151imbi1i 340 . . . . . . . . 9 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)))
153 eqcom 2772 . . . . . . . . . 10 (((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘) ↔ ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
154153imbi2i 327 . . . . . . . . 9 ((𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
155152, 154bitri 266 . . . . . . . 8 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
15680, 155mpbi 221 . . . . . . 7 (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
157156oveq2d 6858 . . . . . 6 (𝑚 = 𝑛 → ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
158157prodeq2ad 40462 . . . . 5 (𝑚 = 𝑛 → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
159158cbvmptv 4909 . . . 4 (𝑚 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
160 eqid 2765 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
161 eqid 2765 . . . 4 ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
162 fveq2 6375 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
163 fveq2 6375 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
164162, 163oveq12d 6860 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
165164cbvmptv 4909 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
166165rneqi 5520 . . . . . . . . 9 ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
167166infeq1i 8591 . . . . . . . 8 inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
168167oveq2i 6853 . . . . . . 7 (1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < )) = (1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))
169168fveq2i 6378 . . . . . 6 (⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) = (⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )))
170169oveq1i 6852 . . . . 5 ((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
171170fveq2i 6378 . . . 4 (ℤ‘((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1)) = (ℤ‘((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1))
1721, 7, 21, 148, 149, 14, 24, 150, 159, 160, 161, 171vonioolem1 41534 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
173147, 172eqbrtrd 4831 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
174 climuni 14568 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
175144, 173, 174syl2anc 579 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wtru 1653  wcel 2155  wne 2937  wral 3055  Vcvv 3350  wss 3732  c0 4079   ciun 4676   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278  wf 6064  cfv 6068  (class class class)co 6842  Xcixp 8113  Fincfn 8160  infcinf 8554  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  *cxr 10327   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  cn 11274  cuz 11886  +crp 12028  (,)cioo 12377  [,)cico 12379  cfl 12799  cli 14500  cprod 14918  Meascmea 41303  volncvoln 41392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-ac2 9538  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-ac 9190  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-rlim 14505  df-sum 14702  df-prod 14919  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-pws 16376  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-mulg 17808  df-subg 17855  df-ghm 17922  df-cntz 18013  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-rnghom 18984  df-drng 19018  df-field 19019  df-subrg 19047  df-abv 19086  df-staf 19114  df-srng 19115  df-lmod 19134  df-lss 19202  df-lmhm 19294  df-lvec 19375  df-sra 19446  df-rgmod 19447  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-refld 20225  df-phl 20246  df-dsmm 20352  df-frlm 20367  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-xms 22404  df-ms 22405  df-tms 22406  df-nm 22666  df-ngp 22667  df-tng 22668  df-nrg 22669  df-nlm 22670  df-cncf 22960  df-clm 23141  df-cph 23246  df-tcph 23247  df-rrx 23462  df-ovol 23522  df-vol 23523  df-salg 41166  df-sumge0 41217  df-mea 41304  df-ome 41344  df-caragen 41346  df-ovoln 41391  df-voln 41393
This theorem is referenced by:  vonioo  41536
  Copyright terms: Public domain W3C validator