Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem2 Structured version   Visualization version   GIF version

Theorem vonioolem2 46679
Description: The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem2.x (𝜑𝑋 ∈ Fin)
vonioolem2.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem2.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem2.n (𝜑𝑋 ≠ ∅)
vonioolem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioolem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
vonioolem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonioolem2
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioolem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
21vonmea 46572 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
3 1zzd 12564 . . . 4 (𝜑 → 1 ∈ ℤ)
4 nnuz 12836 . . . 4 ℕ = (ℤ‘1)
51adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
6 eqid 2729 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
7 vonioolem2.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
98ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
10 nnrecre 12228 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11readdcld 11203 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
1312fmpttd 7087 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
14 vonioolem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1514a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
161mptexd 7198 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1815, 17fvmpt2d 6981 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1918feq1d 6670 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2013, 19mpbird 257 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
21 vonioolem2.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
2221adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
235, 6, 20, 22hoimbl 46629 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
24 vonioolem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
2523, 24fmptd 7086 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
26 nfv 1914 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
27 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
2827oveq2d 7403 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐴𝑘) + (1 / 𝑛)) = ((𝐴𝑘) + (1 / 𝑚)))
2928mpteq2dv 5201 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3029cbvmptv 5211 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3114, 30eqtri 2752 . . . . . . . . . . 11 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
32 oveq2 7395 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
3332oveq2d 7403 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
3433mpteq2dv 5201 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3635peano2nnd 12203 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
375mptexd 7198 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))) ∈ V)
3831, 34, 36, 37fvmptd3 6991 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
39 ovexd 7422 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ V)
4038, 39fvmpt2d 6981 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
41 1red 11175 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
42 nnre 12193 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4342, 41readdcld 11203 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
44 peano2nn 12198 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
45 nnne0 12220 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4741, 43, 46redivcld 12010 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4847ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
499, 48readdcld 11203 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ ℝ)
5040, 49eqeltrd 2828 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ)
5150rexrd 11224 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ*)
52 ressxr 11218 . . . . . . . . 9 ℝ ⊆ ℝ*
5321ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
5452, 53sselid 3944 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5554adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5642ltp1d 12113 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
57 nnrp 12963 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5844nnrpd 12993 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
5957, 58ltrecd 13013 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
6056, 59mpbid 232 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
6147, 10, 60ltled 11322 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6261ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6348, 11, 9, 62leadd2dd 11793 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛)))
64 ovexd 7422 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
6518, 64fvmpt2d 6981 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
6640, 65breq12d 5120 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛))))
6763, 66mpbird 257 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
6853adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
69 eqidd 2730 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) = (𝐵𝑘))
7068, 69eqled 11277 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
71 icossico 13377 . . . . . . 7 (((((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7251, 55, 67, 70, 71syl22anc 838 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7326, 72ixpssixp 45086 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7424a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
7523elexd 3471 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
7674, 75fvmpt2d 6981 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
77 fveq2 6858 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7877fveq1d 6860 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7978oveq1d 7402 . . . . . . . . . 10 (𝑛 = 𝑚 → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8079ixpeq2dv 8886 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8180cbvmptv 5211 . . . . . . . 8 (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8224, 81eqtri 2752 . . . . . . 7 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
83 fveq2 6858 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8483fveq1d 6860 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8584oveq1d 7402 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
8685ixpeq2dv 8886 . . . . . . 7 (𝑚 = (𝑛 + 1) → X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
87 ovex 7420 . . . . . . . . . 10 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
8887rgenw 3048 . . . . . . . . 9 𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
89 ixpexg 8895 . . . . . . . . 9 (∀𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9088, 89ax-mp 5 . . . . . . . 8 X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
9190a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9282, 86, 36, 91fvmptd3 6991 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
9376, 92sseq12d 3980 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)) ↔ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘))))
9473, 93mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)))
951, 6, 7, 21hoimbl 46629 . . . . 5 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
96 nfv 1914 . . . . . 6 𝑘𝜑
977ffvelcdmda 7056 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
9896, 1, 97, 53vonhoire 46670 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
99 vonioolem2.i . . . . . . 7 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
10099a1i 11 . . . . . 6 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
101 nftru 1804 . . . . . . . . 9 𝑘
102 ioossico 13399 . . . . . . . . . 10 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))
103102a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘𝑋) → ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
104101, 103ixpssixp 45086 . . . . . . . 8 (⊤ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
105104mptru 1547 . . . . . . 7 X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
106105a1i 11 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
107100, 106eqsstrd 3981 . . . . 5 (𝜑𝐼X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
10852a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
1097, 108fssd 6705 . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ*)
11021, 108fssd 6705 . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ*)
1111, 6, 109, 110ioovonmbl 46675 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
11299, 111eqeltrid 2832 . . . . 5 (𝜑𝐼 ∈ dom (voln‘𝑋))
1132, 95, 98, 107, 112meassre 46475 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) ∈ ℝ)
1142adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (voln‘𝑋) ∈ Meas)
11576, 23eqeltrd 2828 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ dom (voln‘𝑋))
116112adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐼 ∈ dom (voln‘𝑋))
11752, 97sselid 3944 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
118117adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
11957rpreccld 13005 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
120119ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
1219, 120ltaddrpd 13028 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)))
122 icossioo 13401 . . . . . . . 8 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
123118, 55, 121, 70, 122syl22anc 838 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
12426, 123ixpssixp 45086 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
12565oveq1d 7402 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
126125ixpeq2dva 8885 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12776, 126eqtrd 2764 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12899a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
129127, 128sseq12d 3980 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ 𝐼X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))))
130124, 129mpbird 257 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ 𝐼)
131114, 6, 115, 116, 130meassle 46461 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) ≤ ((voln‘𝑋)‘𝐼))
132 eqid 2729 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1332, 3, 4, 25, 94, 113, 131, 132meaiuninc2 46480 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
13496, 1, 97, 54iunhoiioo 46674 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
135127iuneq2dv 4980 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
136134, 135, 1003eqtr4d 2774 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
137136eqcomd 2735 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
138137fveq2d 6862 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
139138eqcomd 2735 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
140133, 139breqtrd 5133 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
141 2fveq3 6863 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
142141cbvmptv 5211 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
143142a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
144 vonioolem2.n . . . 4 (𝜑𝑋 ≠ ∅)
145 vonioolem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
146142eqcomi 2738 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
147 eqcom 2736 . . . . . . . . . 10 (𝑛 = 𝑚𝑚 = 𝑛)
148147imbi1i 349 . . . . . . . . 9 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)))
149 eqcom 2736 . . . . . . . . . 10 (((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘) ↔ ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
150149imbi2i 336 . . . . . . . . 9 ((𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
151148, 150bitri 275 . . . . . . . 8 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
15278, 151mpbi 230 . . . . . . 7 (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
153152oveq2d 7403 . . . . . 6 (𝑚 = 𝑛 → ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
154153prodeq2ad 45590 . . . . 5 (𝑚 = 𝑛 → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
155154cbvmptv 5211 . . . 4 (𝑚 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
156 eqid 2729 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
157 eqid 2729 . . . 4 ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
158 fveq2 6858 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
159 fveq2 6858 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
160158, 159oveq12d 7405 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
161160cbvmptv 5211 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
162161rneqi 5901 . . . . . . . . 9 ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
163162infeq1i 9430 . . . . . . . 8 inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
164163oveq2i 7398 . . . . . . 7 (1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < )) = (1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))
165164fveq2i 6861 . . . . . 6 (⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) = (⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )))
166165oveq1i 7397 . . . . 5 ((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
167166fveq2i 6861 . . . 4 (ℤ‘((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1)) = (ℤ‘((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1))
1681, 7, 21, 144, 145, 14, 24, 146, 155, 156, 157, 167vonioolem1 46678 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
169143, 168eqbrtrd 5129 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
170 climuni 15518 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
171140, 169, 170syl2anc 584 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  Vcvv 3447  wss 3914  c0 4296   ciun 4955   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  Xcixp 8870  Fincfn 8918  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  cuz 12793  +crp 12951  (,)cioo 13306  [,)cico 13308  cfl 13752  cli 15450  cprod 15869  Meascmea 46447  volncvoln 46536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-pws 17412  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-abv 20718  df-staf 20748  df-srng 20749  df-lmod 20768  df-lss 20838  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-refld 21514  df-phl 21535  df-dsmm 21641  df-frlm 21656  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-tng 24472  df-nrg 24473  df-nlm 24474  df-cncf 24771  df-clm 24963  df-cph 25068  df-tcph 25069  df-rrx 25285  df-ovol 25365  df-vol 25366  df-salg 46307  df-sumge0 46361  df-mea 46448  df-ome 46488  df-caragen 46490  df-ovoln 46535  df-voln 46537
This theorem is referenced by:  vonioo  46680
  Copyright terms: Public domain W3C validator