Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem2 Structured version   Visualization version   GIF version

Theorem vonioolem2 46701
Description: The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem2.x (𝜑𝑋 ∈ Fin)
vonioolem2.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem2.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem2.n (𝜑𝑋 ≠ ∅)
vonioolem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioolem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
vonioolem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonioolem2
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioolem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
21vonmea 46594 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
3 1zzd 12650 . . . 4 (𝜑 → 1 ∈ ℤ)
4 nnuz 12922 . . . 4 ℕ = (ℤ‘1)
51adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
6 eqid 2736 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
7 vonioolem2.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
98ffvelcdmda 7103 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
10 nnrecre 12309 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11readdcld 11291 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
1312fmpttd 7134 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
14 vonioolem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1514a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
161mptexd 7245 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1815, 17fvmpt2d 7028 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1918feq1d 6719 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2013, 19mpbird 257 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
21 vonioolem2.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
2221adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
235, 6, 20, 22hoimbl 46651 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
24 vonioolem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
2523, 24fmptd 7133 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
26 nfv 1913 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
27 oveq2 7440 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
2827oveq2d 7448 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐴𝑘) + (1 / 𝑛)) = ((𝐴𝑘) + (1 / 𝑚)))
2928mpteq2dv 5243 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3029cbvmptv 5254 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3114, 30eqtri 2764 . . . . . . . . . . 11 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
32 oveq2 7440 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
3332oveq2d 7448 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
3433mpteq2dv 5243 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3635peano2nnd 12284 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
375mptexd 7245 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))) ∈ V)
3831, 34, 36, 37fvmptd3 7038 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
39 ovexd 7467 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ V)
4038, 39fvmpt2d 7028 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
41 1red 11263 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
42 nnre 12274 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4342, 41readdcld 11291 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
44 peano2nn 12279 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
45 nnne0 12301 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4741, 43, 46redivcld 12096 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4847ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
499, 48readdcld 11291 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ ℝ)
5040, 49eqeltrd 2840 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ)
5150rexrd 11312 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ*)
52 ressxr 11306 . . . . . . . . 9 ℝ ⊆ ℝ*
5321ffvelcdmda 7103 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
5452, 53sselid 3980 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5554adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5642ltp1d 12199 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
57 nnrp 13047 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5844nnrpd 13076 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
5957, 58ltrecd 13096 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
6056, 59mpbid 232 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
6147, 10, 60ltled 11410 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6261ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6348, 11, 9, 62leadd2dd 11879 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛)))
64 ovexd 7467 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
6518, 64fvmpt2d 7028 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
6640, 65breq12d 5155 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛))))
6763, 66mpbird 257 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
6853adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
69 eqidd 2737 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) = (𝐵𝑘))
7068, 69eqled 11365 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
71 icossico 13458 . . . . . . 7 (((((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7251, 55, 67, 70, 71syl22anc 838 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7326, 72ixpssixp 45102 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7424a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
7523elexd 3503 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
7674, 75fvmpt2d 7028 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
77 fveq2 6905 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7877fveq1d 6907 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7978oveq1d 7447 . . . . . . . . . 10 (𝑛 = 𝑚 → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8079ixpeq2dv 8954 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8180cbvmptv 5254 . . . . . . . 8 (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8224, 81eqtri 2764 . . . . . . 7 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
83 fveq2 6905 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8483fveq1d 6907 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8584oveq1d 7447 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
8685ixpeq2dv 8954 . . . . . . 7 (𝑚 = (𝑛 + 1) → X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
87 ovex 7465 . . . . . . . . . 10 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
8887rgenw 3064 . . . . . . . . 9 𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
89 ixpexg 8963 . . . . . . . . 9 (∀𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9088, 89ax-mp 5 . . . . . . . 8 X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
9190a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9282, 86, 36, 91fvmptd3 7038 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
9376, 92sseq12d 4016 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)) ↔ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘))))
9473, 93mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)))
951, 6, 7, 21hoimbl 46651 . . . . 5 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
96 nfv 1913 . . . . . 6 𝑘𝜑
977ffvelcdmda 7103 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
9896, 1, 97, 53vonhoire 46692 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
99 vonioolem2.i . . . . . . 7 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
10099a1i 11 . . . . . 6 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
101 nftru 1803 . . . . . . . . 9 𝑘
102 ioossico 13479 . . . . . . . . . 10 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))
103102a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘𝑋) → ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
104101, 103ixpssixp 45102 . . . . . . . 8 (⊤ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
105104mptru 1546 . . . . . . 7 X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
106105a1i 11 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
107100, 106eqsstrd 4017 . . . . 5 (𝜑𝐼X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
10852a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
1097, 108fssd 6752 . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ*)
11021, 108fssd 6752 . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ*)
1111, 6, 109, 110ioovonmbl 46697 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
11299, 111eqeltrid 2844 . . . . 5 (𝜑𝐼 ∈ dom (voln‘𝑋))
1132, 95, 98, 107, 112meassre 46497 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) ∈ ℝ)
1142adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (voln‘𝑋) ∈ Meas)
11576, 23eqeltrd 2840 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ dom (voln‘𝑋))
116112adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐼 ∈ dom (voln‘𝑋))
11752, 97sselid 3980 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
118117adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
11957rpreccld 13088 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
120119ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
1219, 120ltaddrpd 13111 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)))
122 icossioo 13481 . . . . . . . 8 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
123118, 55, 121, 70, 122syl22anc 838 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
12426, 123ixpssixp 45102 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
12565oveq1d 7447 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
126125ixpeq2dva 8953 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12776, 126eqtrd 2776 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12899a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
129127, 128sseq12d 4016 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ 𝐼X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))))
130124, 129mpbird 257 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ 𝐼)
131114, 6, 115, 116, 130meassle 46483 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) ≤ ((voln‘𝑋)‘𝐼))
132 eqid 2736 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1332, 3, 4, 25, 94, 113, 131, 132meaiuninc2 46502 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
13496, 1, 97, 54iunhoiioo 46696 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
135127iuneq2dv 5015 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
136134, 135, 1003eqtr4d 2786 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
137136eqcomd 2742 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
138137fveq2d 6909 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
139138eqcomd 2742 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
140133, 139breqtrd 5168 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
141 2fveq3 6910 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
142141cbvmptv 5254 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
143142a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
144 vonioolem2.n . . . 4 (𝜑𝑋 ≠ ∅)
145 vonioolem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
146142eqcomi 2745 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
147 eqcom 2743 . . . . . . . . . 10 (𝑛 = 𝑚𝑚 = 𝑛)
148147imbi1i 349 . . . . . . . . 9 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)))
149 eqcom 2743 . . . . . . . . . 10 (((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘) ↔ ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
150149imbi2i 336 . . . . . . . . 9 ((𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
151148, 150bitri 275 . . . . . . . 8 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
15278, 151mpbi 230 . . . . . . 7 (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
153152oveq2d 7448 . . . . . 6 (𝑚 = 𝑛 → ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
154153prodeq2ad 45612 . . . . 5 (𝑚 = 𝑛 → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
155154cbvmptv 5254 . . . 4 (𝑚 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
156 eqid 2736 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
157 eqid 2736 . . . 4 ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
158 fveq2 6905 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
159 fveq2 6905 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
160158, 159oveq12d 7450 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
161160cbvmptv 5254 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
162161rneqi 5947 . . . . . . . . 9 ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
163162infeq1i 9519 . . . . . . . 8 inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
164163oveq2i 7443 . . . . . . 7 (1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < )) = (1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))
165164fveq2i 6908 . . . . . 6 (⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) = (⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )))
166165oveq1i 7442 . . . . 5 ((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
167166fveq2i 6908 . . . 4 (ℤ‘((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1)) = (ℤ‘((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1))
1681, 7, 21, 144, 145, 14, 24, 146, 155, 156, 157, 167vonioolem1 46700 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
169143, 168eqbrtrd 5164 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
170 climuni 15589 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
171140, 169, 170syl2anc 584 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wtru 1540  wcel 2107  wne 2939  wral 3060  Vcvv 3479  wss 3950  c0 4332   ciun 4990   class class class wbr 5142  cmpt 5224  dom cdm 5684  ran crn 5685  wf 6556  cfv 6560  (class class class)co 7432  Xcixp 8938  Fincfn 8986  infcinf 9482  cr 11155  0cc0 11156  1c1 11157   + caddc 11159  *cxr 11295   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  cuz 12879  +crp 13035  (,)cioo 13388  [,)cico 13390  cfl 13831  cli 15521  cprod 15940  Meascmea 46469  volncvoln 46558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-ac2 10504  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-acn 9983  df-ac 10157  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-prod 15941  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-pws 17495  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-drng 20732  df-field 20733  df-abv 20811  df-staf 20841  df-srng 20842  df-lmod 20861  df-lss 20931  df-lmhm 21022  df-lvec 21103  df-sra 21173  df-rgmod 21174  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-refld 21624  df-phl 21645  df-dsmm 21753  df-frlm 21768  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cn 23236  df-cnp 23237  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-nm 24596  df-ngp 24597  df-tng 24598  df-nrg 24599  df-nlm 24600  df-cncf 24905  df-clm 25097  df-cph 25203  df-tcph 25204  df-rrx 25420  df-ovol 25500  df-vol 25501  df-salg 46329  df-sumge0 46383  df-mea 46470  df-ome 46510  df-caragen 46512  df-ovoln 46557  df-voln 46559
This theorem is referenced by:  vonioo  46702
  Copyright terms: Public domain W3C validator