Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem2 Structured version   Visualization version   GIF version

Theorem vonioolem2 46778
Description: The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem2.x (𝜑𝑋 ∈ Fin)
vonioolem2.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem2.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem2.n (𝜑𝑋 ≠ ∅)
vonioolem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioolem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
vonioolem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonioolem2
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioolem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
21vonmea 46671 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
3 1zzd 12503 . . . 4 (𝜑 → 1 ∈ ℤ)
4 nnuz 12775 . . . 4 ℕ = (ℤ‘1)
51adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
6 eqid 2731 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
7 vonioolem2.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
98ffvelcdmda 7017 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
10 nnrecre 12167 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11readdcld 11141 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
1312fmpttd 7048 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
14 vonioolem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1514a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
161mptexd 7158 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
1815, 17fvmpt2d 6942 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
1918feq1d 6633 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2013, 19mpbird 257 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
21 vonioolem2.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
2221adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
235, 6, 20, 22hoimbl 46728 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
24 vonioolem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
2523, 24fmptd 7047 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
26 nfv 1915 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
27 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
2827oveq2d 7362 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐴𝑘) + (1 / 𝑛)) = ((𝐴𝑘) + (1 / 𝑚)))
2928mpteq2dv 5183 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3029cbvmptv 5193 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
3114, 30eqtri 2754 . . . . . . . . . . 11 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
32 oveq2 7354 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
3332oveq2d 7362 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
3433mpteq2dv 5183 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3635peano2nnd 12142 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
375mptexd 7158 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))) ∈ V)
3831, 34, 36, 37fvmptd3 6952 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / (𝑛 + 1)))))
39 ovexd 7381 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ V)
4038, 39fvmpt2d 6942 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐴𝑘) + (1 / (𝑛 + 1))))
41 1red 11113 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
42 nnre 12132 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4342, 41readdcld 11141 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
44 peano2nn 12137 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
45 nnne0 12159 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4741, 43, 46redivcld 11949 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4847ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
499, 48readdcld 11141 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ∈ ℝ)
5040, 49eqeltrd 2831 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ)
5150rexrd 11162 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ*)
52 ressxr 11156 . . . . . . . . 9 ℝ ⊆ ℝ*
5321ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
5452, 53sselid 3927 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5554adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
5642ltp1d 12052 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
57 nnrp 12902 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5844nnrpd 12932 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
5957, 58ltrecd 12952 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
6056, 59mpbid 232 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
6147, 10, 60ltled 11261 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6261ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
6348, 11, 9, 62leadd2dd 11732 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛)))
64 ovexd 7381 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
6518, 64fvmpt2d 6942 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
6640, 65breq12d 5102 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐴𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐴𝑘) + (1 / 𝑛))))
6763, 66mpbird 257 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
6853adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
69 eqidd 2732 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) = (𝐵𝑘))
7068, 69eqled 11216 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
71 icossico 13316 . . . . . . 7 (((((𝐶‘(𝑛 + 1))‘𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7251, 55, 67, 70, 71syl22anc 838 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7326, 72ixpssixp 45188 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
7424a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
7523elexd 3460 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
7674, 75fvmpt2d 6942 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
77 fveq2 6822 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7877fveq1d 6824 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7978oveq1d 7361 . . . . . . . . . 10 (𝑛 = 𝑚 → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8079ixpeq2dv 8837 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8180cbvmptv 5193 . . . . . . . 8 (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
8224, 81eqtri 2754 . . . . . . 7 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)))
83 fveq2 6822 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8483fveq1d 6824 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8584oveq1d 7361 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
8685ixpeq2dv 8837 . . . . . . 7 (𝑚 = (𝑛 + 1) → X𝑘𝑋 (((𝐶𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
87 ovex 7379 . . . . . . . . . 10 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
8887rgenw 3051 . . . . . . . . 9 𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
89 ixpexg 8846 . . . . . . . . 9 (∀𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9088, 89ax-mp 5 . . . . . . . 8 X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V
9190a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)) ∈ V)
9282, 86, 36, 91fvmptd3 6952 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘)))
9376, 92sseq12d 3963 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)) ↔ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ⊆ X𝑘𝑋 (((𝐶‘(𝑛 + 1))‘𝑘)[,)(𝐵𝑘))))
9473, 93mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ (𝐷‘(𝑛 + 1)))
951, 6, 7, 21hoimbl 46728 . . . . 5 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
96 nfv 1915 . . . . . 6 𝑘𝜑
977ffvelcdmda 7017 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
9896, 1, 97, 53vonhoire 46769 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
99 vonioolem2.i . . . . . . 7 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
10099a1i 11 . . . . . 6 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
101 nftru 1805 . . . . . . . . 9 𝑘
102 ioossico 13338 . . . . . . . . . 10 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))
103102a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘𝑋) → ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
104101, 103ixpssixp 45188 . . . . . . . 8 (⊤ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
105104mptru 1548 . . . . . . 7 X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
106105a1i 11 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
107100, 106eqsstrd 3964 . . . . 5 (𝜑𝐼X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
10852a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
1097, 108fssd 6668 . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ*)
11021, 108fssd 6668 . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ*)
1111, 6, 109, 110ioovonmbl 46774 . . . . . 6 (𝜑X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
11299, 111eqeltrid 2835 . . . . 5 (𝜑𝐼 ∈ dom (voln‘𝑋))
1132, 95, 98, 107, 112meassre 46574 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) ∈ ℝ)
1142adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (voln‘𝑋) ∈ Meas)
11576, 23eqeltrd 2831 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ dom (voln‘𝑋))
116112adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐼 ∈ dom (voln‘𝑋))
11752, 97sselid 3927 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
118117adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
11957rpreccld 12944 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
120119ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
1219, 120ltaddrpd 12967 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)))
122 icossioo 13340 . . . . . . . 8 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) < ((𝐴𝑘) + (1 / 𝑛)) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
123118, 55, 121, 70, 122syl22anc 838 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)(,)(𝐵𝑘)))
12426, 123ixpssixp 45188 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
12565oveq1d 7361 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
126125ixpeq2dva 8836 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12776, 126eqtrd 2766 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
12899a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
129127, 128sseq12d 3963 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛) ⊆ 𝐼X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))))
130124, 129mpbird 257 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ⊆ 𝐼)
131114, 6, 115, 116, 130meassle 46560 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) ≤ ((voln‘𝑋)‘𝐼))
132 eqid 2731 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1332, 3, 4, 25, 94, 113, 131, 132meaiuninc2 46579 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
13496, 1, 97, 54iunhoiioo 46773 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)) = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
135127iuneq2dv 4964 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 (((𝐴𝑘) + (1 / 𝑛))[,)(𝐵𝑘)))
136134, 135, 1003eqtr4d 2776 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
137136eqcomd 2737 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
138137fveq2d 6826 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
139138eqcomd 2737 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
140133, 139breqtrd 5115 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
141 2fveq3 6827 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
142141cbvmptv 5193 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
143142a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
144 vonioolem2.n . . . 4 (𝜑𝑋 ≠ ∅)
145 vonioolem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
146142eqcomi 2740 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
147 eqcom 2738 . . . . . . . . . 10 (𝑛 = 𝑚𝑚 = 𝑛)
148147imbi1i 349 . . . . . . . . 9 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)))
149 eqcom 2738 . . . . . . . . . 10 (((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘) ↔ ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
150149imbi2i 336 . . . . . . . . 9 ((𝑚 = 𝑛 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
151148, 150bitri 275 . . . . . . . 8 ((𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘)) ↔ (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘)))
15278, 151mpbi 230 . . . . . . 7 (𝑚 = 𝑛 → ((𝐶𝑚)‘𝑘) = ((𝐶𝑛)‘𝑘))
153152oveq2d 7362 . . . . . 6 (𝑚 = 𝑛 → ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
154153prodeq2ad 45691 . . . . 5 (𝑚 = 𝑛 → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
155154cbvmptv 5193 . . . 4 (𝑚 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑚)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
156 eqid 2731 . . . 4 inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
157 eqid 2731 . . . 4 ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
158 fveq2 6822 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
159 fveq2 6822 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
160158, 159oveq12d 7364 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
161160cbvmptv 5193 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
162161rneqi 5876 . . . . . . . . 9 ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))) = ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
163162infeq1i 9363 . . . . . . . 8 inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
164163oveq2i 7357 . . . . . . 7 (1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < )) = (1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))
165164fveq2i 6825 . . . . . 6 (⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) = (⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )))
166165oveq1i 7356 . . . . 5 ((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1) = ((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1)
167166fveq2i 6825 . . . 4 (ℤ‘((⌊‘(1 / inf(ran (𝑗𝑋 ↦ ((𝐵𝑗) − (𝐴𝑗))), ℝ, < ))) + 1)) = (ℤ‘((⌊‘(1 / inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ))) + 1))
1681, 7, 21, 144, 145, 14, 24, 146, 155, 156, 157, 167vonioolem1 46777 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
169143, 168eqbrtrd 5111 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
170 climuni 15459 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
171140, 169, 170syl2anc 584 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  c0 4280   ciun 4939   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  Xcixp 8821  Fincfn 8869  infcinf 9325  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  cuz 12732  +crp 12890  (,)cioo 13245  [,)cico 13247  cfl 13694  cli 15391  cprod 15810  Meascmea 46546  volncvoln 46635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-pws 17353  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-abv 20724  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-lmhm 20956  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-refld 21542  df-phl 21563  df-dsmm 21669  df-frlm 21684  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-nm 24497  df-ngp 24498  df-tng 24499  df-nrg 24500  df-nlm 24501  df-cncf 24798  df-clm 24990  df-cph 25095  df-tcph 25096  df-rrx 25312  df-ovol 25392  df-vol 25393  df-salg 46406  df-sumge0 46460  df-mea 46547  df-ome 46587  df-caragen 46589  df-ovoln 46634  df-voln 46636
This theorem is referenced by:  vonioo  46779
  Copyright terms: Public domain W3C validator