Step | Hyp | Ref
| Expression |
1 | | oveq2 7303 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) |
2 | 1 | oveq2d 7311 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 𝑚))) |
3 | 2 | oveq2d 7311 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + (1 / 𝑚)))) |
4 | 3 | ixpeq2dv 8721 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
5 | 4 | cbviinv 4974 |
. . . . . . . 8
⊢ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
6 | 5 | eleq2i 2825 |
. . . . . . 7
⊢ (𝑓 ∈ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
7 | 6 | biimpi 215 |
. . . . . 6
⊢ (𝑓 ∈ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
9 | | iunhoiicc.k |
. . . . . . 7
⊢
Ⅎ𝑘𝜑 |
10 | | nfcv 2902 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑓 |
11 | | nfcv 2902 |
. . . . . . . . 9
⊢
Ⅎ𝑘ℕ |
12 | | nfixp1 8726 |
. . . . . . . . 9
⊢
Ⅎ𝑘X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
13 | 11, 12 | nfiin 4958 |
. . . . . . . 8
⊢
Ⅎ𝑘∩ 𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
14 | 10, 13 | nfel 2916 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑓 ∈ ∩ 𝑚 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
15 | 9, 14 | nfan 1898 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
16 | | iunhoiicc.a |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
17 | 16 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
18 | | iunhoiicc.b |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
19 | 18 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
20 | 6 | biimpri 227 |
. . . . . . 7
⊢ (𝑓 ∈ ∩ 𝑚 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) → 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
21 | 20 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
22 | 15, 17, 19, 21 | iinhoiicclem 44247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
23 | 8, 22 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
24 | 23 | ralrimiva 3137 |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
25 | | dfss3 3911 |
. . 3
⊢ (∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ↔ ∀𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
26 | 24, 25 | sylibr 233 |
. 2
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
27 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑘 𝑛 ∈ ℕ |
28 | 9, 27 | nfan 1898 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑛 ∈ ℕ) |
29 | 16 | rexrd 11053 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈
ℝ*) |
30 | 29 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈
ℝ*) |
31 | 18 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
32 | | nnrp 12769 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
33 | 32 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝑛 ∈ ℝ+) |
34 | 33 | rpreccld 12810 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈
ℝ+) |
35 | 34 | rpred 12800 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
36 | 31, 35 | readdcld 11032 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
37 | 36 | rexrd 11053 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
38 | 16 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
39 | 38 | leidd 11569 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ≤ 𝐴) |
40 | 31, 34 | ltaddrpd 12833 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐵 < (𝐵 + (1 / 𝑛))) |
41 | | iccssico 13179 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*)
∧ (𝐴 ≤ 𝐴 ∧ 𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛)))) |
42 | 30, 37, 39, 40, 41 | syl22anc 835 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛)))) |
43 | 28, 42 | ixpssixp 42666 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (𝐴[,]𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
44 | 43 | ralrimiva 3137 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
45 | | ssiin 4988 |
. . 3
⊢ (X𝑘 ∈
𝑋 (𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
46 | 44, 45 | sylibr 233 |
. 2
⊢ (𝜑 → X𝑘 ∈
𝑋 (𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
47 | 26, 46 | eqssd 3940 |
1
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |