Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicc Structured version   Visualization version   GIF version

Theorem iinhoiicc 46689
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiicc.k 𝑘𝜑
iunhoiicc.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiicc.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
iinhoiicc (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicc
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
21oveq2d 7447 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 𝑚)))
32oveq2d 7447 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + (1 / 𝑚))))
43ixpeq2dv 8953 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
54cbviinv 5041 . . . . . . . 8 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
65eleq2i 2833 . . . . . . 7 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
76biimpi 216 . . . . . 6 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
87adantl 481 . . . . 5 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
9 iunhoiicc.k . . . . . . 7 𝑘𝜑
10 nfcv 2905 . . . . . . . 8 𝑘𝑓
11 nfcv 2905 . . . . . . . . 9 𝑘
12 nfixp1 8958 . . . . . . . . 9 𝑘X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1311, 12nfiin 5024 . . . . . . . 8 𝑘 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1410, 13nfel 2920 . . . . . . 7 𝑘 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
159, 14nfan 1899 . . . . . 6 𝑘(𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
16 iunhoiicc.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1716adantlr 715 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
18 iunhoiicc.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
1918adantlr 715 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
206biimpri 228 . . . . . . 7 (𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2120adantl 481 . . . . . 6 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2215, 17, 19, 21iinhoiicclem 46688 . . . . 5 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
238, 22syldan 591 . . . 4 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
2423ralrimiva 3146 . . 3 (𝜑 → ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
25 dfss3 3972 . . 3 ( 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵) ↔ ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
2624, 25sylibr 234 . 2 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵))
27 nfv 1914 . . . . . 6 𝑘 𝑛 ∈ ℕ
289, 27nfan 1899 . . . . 5 𝑘(𝜑𝑛 ∈ ℕ)
2916rexrd 11311 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
3029adantlr 715 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
3118adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
32 nnrp 13046 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3332ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
3433rpreccld 13087 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
3534rpred 13077 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
3631, 35readdcld 11290 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
3736rexrd 11311 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
3816adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
3938leidd 11829 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴𝐴)
4031, 34ltaddrpd 13110 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 < (𝐵 + (1 / 𝑛)))
41 iccssico 13459 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4230, 37, 39, 40, 41syl22anc 839 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4328, 42ixpssixp 45097 . . . 4 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4443ralrimiva 3146 . . 3 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
45 ssiin 5055 . . 3 (X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4644, 45sylibr 234 . 2 (𝜑X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4726, 46eqssd 4001 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3061  wss 3951   ciin 4992   class class class wbr 5143  (class class class)co 7431  Xcixp 8937  cr 11154  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296   / cdiv 11920  cn 12266  +crp 13034  [,)cico 13389  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ico 13393  df-icc 13394  df-fl 13832
This theorem is referenced by:  vonicclem2  46699
  Copyright terms: Public domain W3C validator