Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicc Structured version   Visualization version   GIF version

Theorem iinhoiicc 46703
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiicc.k 𝑘𝜑
iunhoiicc.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiicc.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
iinhoiicc (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicc
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
21oveq2d 7421 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 𝑚)))
32oveq2d 7421 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + (1 / 𝑚))))
43ixpeq2dv 8927 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
54cbviinv 5017 . . . . . . . 8 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
65eleq2i 2826 . . . . . . 7 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
76biimpi 216 . . . . . 6 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
87adantl 481 . . . . 5 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
9 iunhoiicc.k . . . . . . 7 𝑘𝜑
10 nfcv 2898 . . . . . . . 8 𝑘𝑓
11 nfcv 2898 . . . . . . . . 9 𝑘
12 nfixp1 8932 . . . . . . . . 9 𝑘X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1311, 12nfiin 5000 . . . . . . . 8 𝑘 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1410, 13nfel 2913 . . . . . . 7 𝑘 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
159, 14nfan 1899 . . . . . 6 𝑘(𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
16 iunhoiicc.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1716adantlr 715 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
18 iunhoiicc.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
1918adantlr 715 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
206biimpri 228 . . . . . . 7 (𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2120adantl 481 . . . . . 6 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2215, 17, 19, 21iinhoiicclem 46702 . . . . 5 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
238, 22syldan 591 . . . 4 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
2423ralrimiva 3132 . . 3 (𝜑 → ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
25 dfss3 3947 . . 3 ( 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵) ↔ ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
2624, 25sylibr 234 . 2 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵))
27 nfv 1914 . . . . . 6 𝑘 𝑛 ∈ ℕ
289, 27nfan 1899 . . . . 5 𝑘(𝜑𝑛 ∈ ℕ)
2916rexrd 11285 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
3029adantlr 715 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
3118adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
32 nnrp 13020 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3332ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
3433rpreccld 13061 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
3534rpred 13051 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
3631, 35readdcld 11264 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
3736rexrd 11285 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
3816adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
3938leidd 11803 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴𝐴)
4031, 34ltaddrpd 13084 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 < (𝐵 + (1 / 𝑛)))
41 iccssico 13435 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4230, 37, 39, 40, 41syl22anc 838 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4328, 42ixpssixp 45116 . . . 4 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4443ralrimiva 3132 . . 3 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
45 ssiin 5031 . . 3 (X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4644, 45sylibr 234 . 2 (𝜑X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4726, 46eqssd 3976 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3051  wss 3926   ciin 4968   class class class wbr 5119  (class class class)co 7405  Xcixp 8911  cr 11128  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cle 11270   / cdiv 11894  cn 12240  +crp 13008  [,)cico 13364  [,]cicc 13365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-ico 13368  df-icc 13369  df-fl 13809
This theorem is referenced by:  vonicclem2  46713
  Copyright terms: Public domain W3C validator