Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicc Structured version   Visualization version   GIF version

Theorem iinhoiicc 44248
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiicc.k 𝑘𝜑
iunhoiicc.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiicc.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
iinhoiicc (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicc
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7303 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
21oveq2d 7311 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 𝑚)))
32oveq2d 7311 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + (1 / 𝑚))))
43ixpeq2dv 8721 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
54cbviinv 4974 . . . . . . . 8 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
65eleq2i 2825 . . . . . . 7 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
76biimpi 215 . . . . . 6 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
87adantl 481 . . . . 5 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
9 iunhoiicc.k . . . . . . 7 𝑘𝜑
10 nfcv 2902 . . . . . . . 8 𝑘𝑓
11 nfcv 2902 . . . . . . . . 9 𝑘
12 nfixp1 8726 . . . . . . . . 9 𝑘X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1311, 12nfiin 4958 . . . . . . . 8 𝑘 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1410, 13nfel 2916 . . . . . . 7 𝑘 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
159, 14nfan 1898 . . . . . 6 𝑘(𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
16 iunhoiicc.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1716adantlr 711 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
18 iunhoiicc.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
1918adantlr 711 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
206biimpri 227 . . . . . . 7 (𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2120adantl 481 . . . . . 6 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2215, 17, 19, 21iinhoiicclem 44247 . . . . 5 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
238, 22syldan 590 . . . 4 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
2423ralrimiva 3137 . . 3 (𝜑 → ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
25 dfss3 3911 . . 3 ( 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵) ↔ ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
2624, 25sylibr 233 . 2 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵))
27 nfv 1913 . . . . . 6 𝑘 𝑛 ∈ ℕ
289, 27nfan 1898 . . . . 5 𝑘(𝜑𝑛 ∈ ℕ)
2916rexrd 11053 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
3029adantlr 711 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
3118adantlr 711 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
32 nnrp 12769 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3332ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
3433rpreccld 12810 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
3534rpred 12800 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
3631, 35readdcld 11032 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
3736rexrd 11053 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
3816adantlr 711 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
3938leidd 11569 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴𝐴)
4031, 34ltaddrpd 12833 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 < (𝐵 + (1 / 𝑛)))
41 iccssico 13179 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4230, 37, 39, 40, 41syl22anc 835 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4328, 42ixpssixp 42666 . . . 4 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4443ralrimiva 3137 . . 3 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
45 ssiin 4988 . . 3 (X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4644, 45sylibr 233 . 2 (𝜑X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4726, 46eqssd 3940 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2101  wral 3059  wss 3889   ciin 4928   class class class wbr 5077  (class class class)co 7295  Xcixp 8705  cr 10898  1c1 10900   + caddc 10902  *cxr 11036   < clt 11037  cle 11038   / cdiv 11660  cn 12001  +crp 12758  [,)cico 13109  [,]cicc 13110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-sup 9229  df-inf 9230  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-n0 12262  df-z 12348  df-uz 12611  df-q 12717  df-rp 12759  df-ico 13113  df-icc 13114  df-fl 13540
This theorem is referenced by:  vonicclem2  44258
  Copyright terms: Public domain W3C validator