| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) |
| 2 | 1 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 𝑚))) |
| 3 | 2 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + (1 / 𝑚)))) |
| 4 | 3 | ixpeq2dv 8953 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
| 5 | 4 | cbviinv 5041 |
. . . . . . . 8
⊢ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
| 6 | 5 | eleq2i 2833 |
. . . . . . 7
⊢ (𝑓 ∈ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
| 7 | 6 | biimpi 216 |
. . . . . 6
⊢ (𝑓 ∈ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
| 8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
| 9 | | iunhoiicc.k |
. . . . . . 7
⊢
Ⅎ𝑘𝜑 |
| 10 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑓 |
| 11 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑘ℕ |
| 12 | | nfixp1 8958 |
. . . . . . . . 9
⊢
Ⅎ𝑘X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
| 13 | 11, 12 | nfiin 5024 |
. . . . . . . 8
⊢
Ⅎ𝑘∩ 𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
| 14 | 10, 13 | nfel 2920 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑓 ∈ ∩ 𝑚 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) |
| 15 | 9, 14 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) |
| 16 | | iunhoiicc.a |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| 17 | 16 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| 18 | | iunhoiicc.b |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| 19 | 18 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| 20 | 6 | biimpri 228 |
. . . . . . 7
⊢ (𝑓 ∈ ∩ 𝑚 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) → 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 21 | 20 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 22 | 15, 17, 19, 21 | iinhoiicclem 46688 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 23 | 8, 22 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 24 | 23 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 25 | | dfss3 3972 |
. . 3
⊢ (∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ↔ ∀𝑓 ∈ ∩
𝑛 ∈ ℕ X𝑘 ∈
𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓 ∈ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 26 | 24, 25 | sylibr 234 |
. 2
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 27 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘 𝑛 ∈ ℕ |
| 28 | 9, 27 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑛 ∈ ℕ) |
| 29 | 16 | rexrd 11311 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈
ℝ*) |
| 30 | 29 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈
ℝ*) |
| 31 | 18 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| 32 | | nnrp 13046 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
| 33 | 32 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝑛 ∈ ℝ+) |
| 34 | 33 | rpreccld 13087 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈
ℝ+) |
| 35 | 34 | rpred 13077 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
| 36 | 31, 35 | readdcld 11290 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
| 37 | 36 | rexrd 11311 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
| 38 | 16 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| 39 | 38 | leidd 11829 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐴 ≤ 𝐴) |
| 40 | 31, 34 | ltaddrpd 13110 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝐵 < (𝐵 + (1 / 𝑛))) |
| 41 | | iccssico 13459 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*)
∧ (𝐴 ≤ 𝐴 ∧ 𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 42 | 30, 37, 39, 40, 41 | syl22anc 839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 43 | 28, 42 | ixpssixp 45097 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 (𝐴[,]𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 44 | 43 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 45 | | ssiin 5055 |
. . 3
⊢ (X𝑘 ∈
𝑋 (𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ⊆ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 46 | 44, 45 | sylibr 234 |
. 2
⊢ (𝜑 → X𝑘 ∈
𝑋 (𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) |
| 47 | 26, 46 | eqssd 4001 |
1
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |