Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicc Structured version   Visualization version   GIF version

Theorem iinhoiicc 45001
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiicc.k 𝑘𝜑
iunhoiicc.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiicc.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
iinhoiicc (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicc
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7366 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
21oveq2d 7374 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 𝑚)))
32oveq2d 7374 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + (1 / 𝑚))))
43ixpeq2dv 8854 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
54cbviinv 5002 . . . . . . . 8 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
65eleq2i 2826 . . . . . . 7 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
76biimpi 215 . . . . . 6 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
87adantl 483 . . . . 5 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
9 iunhoiicc.k . . . . . . 7 𝑘𝜑
10 nfcv 2904 . . . . . . . 8 𝑘𝑓
11 nfcv 2904 . . . . . . . . 9 𝑘
12 nfixp1 8859 . . . . . . . . 9 𝑘X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1311, 12nfiin 4986 . . . . . . . 8 𝑘 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1410, 13nfel 2918 . . . . . . 7 𝑘 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
159, 14nfan 1903 . . . . . 6 𝑘(𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
16 iunhoiicc.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1716adantlr 714 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
18 iunhoiicc.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
1918adantlr 714 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
206biimpri 227 . . . . . . 7 (𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2120adantl 483 . . . . . 6 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2215, 17, 19, 21iinhoiicclem 45000 . . . . 5 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
238, 22syldan 592 . . . 4 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
2423ralrimiva 3140 . . 3 (𝜑 → ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
25 dfss3 3933 . . 3 ( 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵) ↔ ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
2624, 25sylibr 233 . 2 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵))
27 nfv 1918 . . . . . 6 𝑘 𝑛 ∈ ℕ
289, 27nfan 1903 . . . . 5 𝑘(𝜑𝑛 ∈ ℕ)
2916rexrd 11210 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
3029adantlr 714 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
3118adantlr 714 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
32 nnrp 12931 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3332ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
3433rpreccld 12972 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
3534rpred 12962 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
3631, 35readdcld 11189 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
3736rexrd 11210 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
3816adantlr 714 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
3938leidd 11726 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴𝐴)
4031, 34ltaddrpd 12995 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 < (𝐵 + (1 / 𝑛)))
41 iccssico 13342 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4230, 37, 39, 40, 41syl22anc 838 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4328, 42ixpssixp 43390 . . . 4 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4443ralrimiva 3140 . . 3 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
45 ssiin 5016 . . 3 (X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4644, 45sylibr 233 . 2 (𝜑X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4726, 46eqssd 3962 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  wral 3061  wss 3911   ciin 4956   class class class wbr 5106  (class class class)co 7358  Xcixp 8838  cr 11055  1c1 11057   + caddc 11059  *cxr 11193   < clt 11194  cle 11195   / cdiv 11817  cn 12158  +crp 12920  [,)cico 13272  [,]cicc 13273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-ico 13276  df-icc 13277  df-fl 13703
This theorem is referenced by:  vonicclem2  45011
  Copyright terms: Public domain W3C validator