Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicclem2 Structured version   Visualization version   GIF version

Theorem vonicclem2 46656
Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicclem2.x (𝜑𝑋 ∈ Fin)
vonicclem2.a (𝜑𝐴:𝑋⟶ℝ)
vonicclem2.b (𝜑𝐵:𝑋⟶ℝ)
vonicclem2.n (𝜑𝑋 ≠ ∅)
vonicclem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
vonicclem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicclem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
vonicclem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
Assertion
Ref Expression
vonicclem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonicclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . 4 𝑛𝜑
2 vonicclem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
32vonmea 46546 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
4 1zzd 12631 . . . 4 (𝜑 → 1 ∈ ℤ)
5 nnuz 12903 . . . 4 ℕ = (ℤ‘1)
62adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
7 eqid 2734 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
8 vonicclem2.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
98adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
10 vonicclem2.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1110ffvelcdmda 7084 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1211adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
13 nnrecre 12290 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1413ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
1512, 14readdcld 11272 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ ℝ)
1615fmpttd 7115 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
17 vonicclem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
1817a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))))
192mptexd 7226 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2019adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2118, 20fvmpt2d 7009 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
2221feq1d 6700 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2316, 22mpbird 257 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
246, 7, 9, 23hoimbl 46603 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ dom (voln‘𝑋))
25 vonicclem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
2624, 25fmptd 7114 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
27 nfv 1913 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
28 ressxr 11287 . . . . . . . . 9 ℝ ⊆ ℝ*
298ffvelcdmda 7084 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3028, 29sselid 3961 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
3130adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
32 ovexd 7448 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ V)
3321, 32fvmpt2d 7009 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐵𝑘) + (1 / 𝑛)))
3433, 15eqeltrd 2833 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
3534rexrd 11293 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ*)
369ffvelcdmda 7084 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3736leidd 11811 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
38 1red 11244 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12255 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4039, 38readdcld 11272 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
41 peano2nn 12260 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
42 nnne0 12282 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4341, 42syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4438, 40, 43redivcld 12077 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4544ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
4639ltp1d 12180 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
47 nnrp 13028 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4841nnrpd 13057 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
4947, 48ltrecd 13077 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
5046, 49mpbid 232 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
5144, 13, 50ltled 11391 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5251ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5345, 14, 12, 52leadd2dd 11860 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛)))
54 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5554oveq2d 7429 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐵𝑘) + (1 / 𝑛)) = ((𝐵𝑘) + (1 / 𝑚)))
5655mpteq2dv 5224 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5756cbvmptv 5235 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5817, 57eqtri 2757 . . . . . . . . . . 11 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
59 oveq2 7421 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
6059oveq2d 7429 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6160mpteq2dv 5224 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
62 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6362peano2nnd 12265 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
646mptexd 7226 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))) ∈ V)
6558, 61, 63, 64fvmptd3 7019 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
66 ovexd 7448 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ∈ V)
6765, 66fvmpt2d 7009 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6867, 33breq12d 5136 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛))))
6953, 68mpbird 257 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
70 icossico 13439 . . . . . . 7 ((((𝐴𝑘) ∈ ℝ* ∧ ((𝐶𝑛)‘𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (𝐴𝑘) ∧ ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7131, 35, 37, 69, 70syl22anc 838 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7227, 71ixpssixp 45054 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
73 fveq2 6886 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7473fveq1d 6888 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7574oveq2d 7429 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7675ixpeq2dv 8935 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7776cbvmptv 5235 . . . . . . . 8 (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7825, 77eqtri 2757 . . . . . . 7 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
79 fveq2 6886 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8079fveq1d 6888 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8180oveq2d 7429 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8281ixpeq2dv 8935 . . . . . . 7 (𝑚 = (𝑛 + 1) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
83 ovex 7446 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
8483rgenw 3054 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
85 ixpexg 8944 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
8684, 85ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
8786a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
8878, 82, 63, 87fvmptd3 7019 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8925a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9024elexd 3487 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ V)
9189, 90fvmpt2d 7009 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
9288, 91sseq12d 3997 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛) ↔ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9372, 92mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛))
94 1nn 12259 . . . . . 6 1 ∈ ℕ
9594, 5eleqtri 2831 . . . . 5 1 ∈ (ℤ‘1)
9695a1i 11 . . . 4 (𝜑 → 1 ∈ (ℤ‘1))
97 fveq2 6886 . . . . . . . . . 10 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
9897fveq1d 6888 . . . . . . . . 9 (𝑛 = 1 → ((𝐶𝑛)‘𝑘) = ((𝐶‘1)‘𝑘))
9998oveq2d 7429 . . . . . . . 8 (𝑛 = 1 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
10099ixpeq2dv 8935 . . . . . . 7 (𝑛 = 1 → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
10194a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
102 ovex 7446 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
103102rgenw 3054 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
104 ixpexg 8944 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
105103, 104ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
106105a1i 11 . . . . . . 7 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
10725, 100, 101, 106fvmptd3 7019 . . . . . 6 (𝜑 → (𝐷‘1) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
108107fveq2d 6890 . . . . 5 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))))
109 nfv 1913 . . . . . 6 𝑘𝜑
110 simpl 482 . . . . . . 7 ((𝜑𝑘𝑋) → 𝜑)
11194a1i 11 . . . . . . 7 ((𝜑𝑘𝑋) → 1 ∈ ℕ)
112 simpr 484 . . . . . . 7 ((𝜑𝑘𝑋) → 𝑘𝑋)
11394elexi 3486 . . . . . . . 8 1 ∈ V
114 eleq1 2821 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℕ ↔ 1 ∈ ℕ))
115114anbi2d 630 . . . . . . . . . 10 (𝑛 = 1 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ)))
116115anbi1d 631 . . . . . . . . 9 (𝑛 = 1 → (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋)))
11798eleq1d 2818 . . . . . . . . 9 (𝑛 = 1 → (((𝐶𝑛)‘𝑘) ∈ ℝ ↔ ((𝐶‘1)‘𝑘) ∈ ℝ))
118116, 117imbi12d 344 . . . . . . . 8 (𝑛 = 1 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ) ↔ (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)))
119113, 118, 34vtocl 3541 . . . . . . 7 (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
120110, 111, 112, 119syl21anc 837 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
121109, 2, 29, 120vonhoire 46644 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))) ∈ ℝ)
122108, 121eqeltrd 2833 . . . 4 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) ∈ ℝ)
123 eqid 2734 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1241, 3, 4, 5, 26, 93, 96, 122, 123meaiininc 46459 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
125109, 29, 11iinhoiicc 46646 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))) = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
12633oveq2d 7429 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
127126ixpeq2dva 8934 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
12891, 127eqtrd 2769 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
129128iineq2dv 4997 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
130 vonicclem2.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
131130a1i 11 . . . . . . 7 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
132125, 129, 1313eqtr4d 2779 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
133132eqcomd 2740 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
134133fveq2d 6890 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
135134eqcomd 2740 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
136124, 135breqtrd 5149 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
137 2fveq3 6891 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
138137cbvmptv 5235 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
139138a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
140 vonicclem2.n . . . 4 (𝜑𝑋 ≠ ∅)
141 vonicclem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
142138eqcomi 2743 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1432, 8, 10, 140, 141, 17, 25, 142vonicclem1 46655 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
144139, 143eqbrtrd 5145 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
145 climuni 15570 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
146136, 144, 145syl2anc 584 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  Vcvv 3463  wss 3931  c0 4313   ciin 4972   class class class wbr 5123  cmpt 5205  dom cdm 5665  wf 6537  cfv 6541  (class class class)co 7413  Xcixp 8919  Fincfn 8967  cr 11136  0cc0 11137  1c1 11138   + caddc 11140  *cxr 11276   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  cn 12248  cuz 12860  [,)cico 13371  [,]cicc 13372  cli 15502  cprod 15921  volncvoln 46510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-rlim 15507  df-sum 15705  df-prod 15922  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cn 23181  df-cnp 23182  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-ovol 25435  df-vol 25436  df-salg 46281  df-sumge0 46335  df-mea 46422  df-ome 46462  df-caragen 46464  df-ovoln 46509  df-voln 46511
This theorem is referenced by:  vonicc  46657
  Copyright terms: Public domain W3C validator