Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicclem2 Structured version   Visualization version   GIF version

Theorem vonicclem2 46689
Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicclem2.x (𝜑𝑋 ∈ Fin)
vonicclem2.a (𝜑𝐴:𝑋⟶ℝ)
vonicclem2.b (𝜑𝐵:𝑋⟶ℝ)
vonicclem2.n (𝜑𝑋 ≠ ∅)
vonicclem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
vonicclem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicclem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
vonicclem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
Assertion
Ref Expression
vonicclem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonicclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑛𝜑
2 vonicclem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
32vonmea 46579 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
4 1zzd 12571 . . . 4 (𝜑 → 1 ∈ ℤ)
5 nnuz 12843 . . . 4 ℕ = (ℤ‘1)
62adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
7 eqid 2730 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
8 vonicclem2.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
98adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
10 vonicclem2.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1110ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1211adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
13 nnrecre 12235 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1413ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
1512, 14readdcld 11210 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ ℝ)
1615fmpttd 7090 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
17 vonicclem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
1817a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))))
192mptexd 7201 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2019adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2118, 20fvmpt2d 6984 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
2221feq1d 6673 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2316, 22mpbird 257 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
246, 7, 9, 23hoimbl 46636 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ dom (voln‘𝑋))
25 vonicclem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
2624, 25fmptd 7089 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
27 nfv 1914 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
28 ressxr 11225 . . . . . . . . 9 ℝ ⊆ ℝ*
298ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3028, 29sselid 3947 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
3130adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
32 ovexd 7425 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ V)
3321, 32fvmpt2d 6984 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐵𝑘) + (1 / 𝑛)))
3433, 15eqeltrd 2829 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
3534rexrd 11231 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ*)
369ffvelcdmda 7059 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3736leidd 11751 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
38 1red 11182 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12200 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4039, 38readdcld 11210 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
41 peano2nn 12205 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
42 nnne0 12227 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4341, 42syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4438, 40, 43redivcld 12017 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4544ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
4639ltp1d 12120 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
47 nnrp 12970 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4841nnrpd 13000 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
4947, 48ltrecd 13020 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
5046, 49mpbid 232 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
5144, 13, 50ltled 11329 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5251ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5345, 14, 12, 52leadd2dd 11800 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛)))
54 oveq2 7398 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5554oveq2d 7406 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐵𝑘) + (1 / 𝑛)) = ((𝐵𝑘) + (1 / 𝑚)))
5655mpteq2dv 5204 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5756cbvmptv 5214 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5817, 57eqtri 2753 . . . . . . . . . . 11 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
59 oveq2 7398 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
6059oveq2d 7406 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6160mpteq2dv 5204 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
62 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6362peano2nnd 12210 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
646mptexd 7201 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))) ∈ V)
6558, 61, 63, 64fvmptd3 6994 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
66 ovexd 7425 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ∈ V)
6765, 66fvmpt2d 6984 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6867, 33breq12d 5123 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛))))
6953, 68mpbird 257 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
70 icossico 13384 . . . . . . 7 ((((𝐴𝑘) ∈ ℝ* ∧ ((𝐶𝑛)‘𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (𝐴𝑘) ∧ ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7131, 35, 37, 69, 70syl22anc 838 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7227, 71ixpssixp 45093 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
73 fveq2 6861 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7473fveq1d 6863 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7574oveq2d 7406 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7675ixpeq2dv 8889 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7776cbvmptv 5214 . . . . . . . 8 (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7825, 77eqtri 2753 . . . . . . 7 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
79 fveq2 6861 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8079fveq1d 6863 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8180oveq2d 7406 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8281ixpeq2dv 8889 . . . . . . 7 (𝑚 = (𝑛 + 1) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
83 ovex 7423 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
8483rgenw 3049 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
85 ixpexg 8898 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
8684, 85ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
8786a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
8878, 82, 63, 87fvmptd3 6994 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8925a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9024elexd 3474 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ V)
9189, 90fvmpt2d 6984 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
9288, 91sseq12d 3983 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛) ↔ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9372, 92mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛))
94 1nn 12204 . . . . . 6 1 ∈ ℕ
9594, 5eleqtri 2827 . . . . 5 1 ∈ (ℤ‘1)
9695a1i 11 . . . 4 (𝜑 → 1 ∈ (ℤ‘1))
97 fveq2 6861 . . . . . . . . . 10 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
9897fveq1d 6863 . . . . . . . . 9 (𝑛 = 1 → ((𝐶𝑛)‘𝑘) = ((𝐶‘1)‘𝑘))
9998oveq2d 7406 . . . . . . . 8 (𝑛 = 1 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
10099ixpeq2dv 8889 . . . . . . 7 (𝑛 = 1 → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
10194a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
102 ovex 7423 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
103102rgenw 3049 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
104 ixpexg 8898 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
105103, 104ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
106105a1i 11 . . . . . . 7 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
10725, 100, 101, 106fvmptd3 6994 . . . . . 6 (𝜑 → (𝐷‘1) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
108107fveq2d 6865 . . . . 5 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))))
109 nfv 1914 . . . . . 6 𝑘𝜑
110 simpl 482 . . . . . . 7 ((𝜑𝑘𝑋) → 𝜑)
11194a1i 11 . . . . . . 7 ((𝜑𝑘𝑋) → 1 ∈ ℕ)
112 simpr 484 . . . . . . 7 ((𝜑𝑘𝑋) → 𝑘𝑋)
11394elexi 3473 . . . . . . . 8 1 ∈ V
114 eleq1 2817 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℕ ↔ 1 ∈ ℕ))
115114anbi2d 630 . . . . . . . . . 10 (𝑛 = 1 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ)))
116115anbi1d 631 . . . . . . . . 9 (𝑛 = 1 → (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋)))
11798eleq1d 2814 . . . . . . . . 9 (𝑛 = 1 → (((𝐶𝑛)‘𝑘) ∈ ℝ ↔ ((𝐶‘1)‘𝑘) ∈ ℝ))
118116, 117imbi12d 344 . . . . . . . 8 (𝑛 = 1 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ) ↔ (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)))
119113, 118, 34vtocl 3527 . . . . . . 7 (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
120110, 111, 112, 119syl21anc 837 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
121109, 2, 29, 120vonhoire 46677 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))) ∈ ℝ)
122108, 121eqeltrd 2829 . . . 4 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) ∈ ℝ)
123 eqid 2730 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1241, 3, 4, 5, 26, 93, 96, 122, 123meaiininc 46492 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
125109, 29, 11iinhoiicc 46679 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))) = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
12633oveq2d 7406 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
127126ixpeq2dva 8888 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
12891, 127eqtrd 2765 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
129128iineq2dv 4984 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
130 vonicclem2.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
131130a1i 11 . . . . . . 7 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
132125, 129, 1313eqtr4d 2775 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
133132eqcomd 2736 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
134133fveq2d 6865 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
135134eqcomd 2736 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
136124, 135breqtrd 5136 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
137 2fveq3 6866 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
138137cbvmptv 5214 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
139138a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
140 vonicclem2.n . . . 4 (𝜑𝑋 ≠ ∅)
141 vonicclem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
142138eqcomi 2739 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1432, 8, 10, 140, 141, 17, 25, 142vonicclem1 46688 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
144139, 143eqbrtrd 5132 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
145 climuni 15525 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
146136, 144, 145syl2anc 584 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  wss 3917  c0 4299   ciin 4959   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  Xcixp 8873  Fincfn 8921  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cuz 12800  [,)cico 13315  [,]cicc 13316  cli 15457  cprod 15876  volncvoln 46543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-salg 46314  df-sumge0 46368  df-mea 46455  df-ome 46495  df-caragen 46497  df-ovoln 46542  df-voln 46544
This theorem is referenced by:  vonicc  46690
  Copyright terms: Public domain W3C validator