Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicclem2 Structured version   Visualization version   GIF version

Theorem vonicclem2 44609
Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicclem2.x (𝜑𝑋 ∈ Fin)
vonicclem2.a (𝜑𝐴:𝑋⟶ℝ)
vonicclem2.b (𝜑𝐵:𝑋⟶ℝ)
vonicclem2.n (𝜑𝑋 ≠ ∅)
vonicclem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
vonicclem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicclem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
vonicclem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
Assertion
Ref Expression
vonicclem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonicclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . 4 𝑛𝜑
2 vonicclem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
32vonmea 44499 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
4 1zzd 12457 . . . 4 (𝜑 → 1 ∈ ℤ)
5 nnuz 12727 . . . 4 ℕ = (ℤ‘1)
62adantr 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
7 eqid 2737 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
8 vonicclem2.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
98adantr 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
10 vonicclem2.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1110ffvelcdmda 7022 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1211adantlr 713 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
13 nnrecre 12121 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1413ad2antlr 725 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
1512, 14readdcld 11110 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ ℝ)
1615fmpttd 7050 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
17 vonicclem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
1817a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))))
192mptexd 7161 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2019adantr 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2118, 20fvmpt2d 6949 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
2221feq1d 6641 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2316, 22mpbird 257 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
246, 7, 9, 23hoimbl 44556 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ dom (voln‘𝑋))
25 vonicclem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
2624, 25fmptd 7049 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
27 nfv 1917 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
28 ressxr 11125 . . . . . . . . 9 ℝ ⊆ ℝ*
298ffvelcdmda 7022 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3028, 29sselid 3934 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
3130adantlr 713 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
32 ovexd 7377 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ V)
3321, 32fvmpt2d 6949 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐵𝑘) + (1 / 𝑛)))
3433, 15eqeltrd 2838 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
3534rexrd 11131 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ*)
369ffvelcdmda 7022 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3736leidd 11647 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
38 1red 11082 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12086 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4039, 38readdcld 11110 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
41 peano2nn 12091 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
42 nnne0 12113 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4341, 42syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4438, 40, 43redivcld 11909 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4544ad2antlr 725 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
4639ltp1d 12011 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
47 nnrp 12847 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4841nnrpd 12876 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
4947, 48ltrecd 12896 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
5046, 49mpbid 231 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
5144, 13, 50ltled 11229 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5251ad2antlr 725 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5345, 14, 12, 52leadd2dd 11696 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛)))
54 oveq2 7350 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5554oveq2d 7358 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐵𝑘) + (1 / 𝑛)) = ((𝐵𝑘) + (1 / 𝑚)))
5655mpteq2dv 5199 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5756cbvmptv 5210 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5817, 57eqtri 2765 . . . . . . . . . . 11 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
59 oveq2 7350 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
6059oveq2d 7358 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6160mpteq2dv 5199 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
62 simpr 486 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6362peano2nnd 12096 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
646mptexd 7161 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))) ∈ V)
6558, 61, 63, 64fvmptd3 6959 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
66 ovexd 7377 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ∈ V)
6765, 66fvmpt2d 6949 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6867, 33breq12d 5110 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛))))
6953, 68mpbird 257 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
70 icossico 13255 . . . . . . 7 ((((𝐴𝑘) ∈ ℝ* ∧ ((𝐶𝑛)‘𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (𝐴𝑘) ∧ ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7131, 35, 37, 69, 70syl22anc 837 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7227, 71ixpssixp 43012 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
73 fveq2 6830 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7473fveq1d 6832 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7574oveq2d 7358 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7675ixpeq2dv 8777 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7776cbvmptv 5210 . . . . . . . 8 (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7825, 77eqtri 2765 . . . . . . 7 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
79 fveq2 6830 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8079fveq1d 6832 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8180oveq2d 7358 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8281ixpeq2dv 8777 . . . . . . 7 (𝑚 = (𝑛 + 1) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
83 ovex 7375 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
8483rgenw 3066 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
85 ixpexg 8786 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
8684, 85ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
8786a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
8878, 82, 63, 87fvmptd3 6959 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8925a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9024elexd 3462 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ V)
9189, 90fvmpt2d 6949 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
9288, 91sseq12d 3969 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛) ↔ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9372, 92mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛))
94 1nn 12090 . . . . . 6 1 ∈ ℕ
9594, 5eleqtri 2836 . . . . 5 1 ∈ (ℤ‘1)
9695a1i 11 . . . 4 (𝜑 → 1 ∈ (ℤ‘1))
97 fveq2 6830 . . . . . . . . . 10 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
9897fveq1d 6832 . . . . . . . . 9 (𝑛 = 1 → ((𝐶𝑛)‘𝑘) = ((𝐶‘1)‘𝑘))
9998oveq2d 7358 . . . . . . . 8 (𝑛 = 1 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
10099ixpeq2dv 8777 . . . . . . 7 (𝑛 = 1 → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
10194a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
102 ovex 7375 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
103102rgenw 3066 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
104 ixpexg 8786 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
105103, 104ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
106105a1i 11 . . . . . . 7 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
10725, 100, 101, 106fvmptd3 6959 . . . . . 6 (𝜑 → (𝐷‘1) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
108107fveq2d 6834 . . . . 5 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))))
109 nfv 1917 . . . . . 6 𝑘𝜑
110 simpl 484 . . . . . . 7 ((𝜑𝑘𝑋) → 𝜑)
11194a1i 11 . . . . . . 7 ((𝜑𝑘𝑋) → 1 ∈ ℕ)
112 simpr 486 . . . . . . 7 ((𝜑𝑘𝑋) → 𝑘𝑋)
11394elexi 3461 . . . . . . . 8 1 ∈ V
114 eleq1 2825 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℕ ↔ 1 ∈ ℕ))
115114anbi2d 630 . . . . . . . . . 10 (𝑛 = 1 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ)))
116115anbi1d 631 . . . . . . . . 9 (𝑛 = 1 → (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋)))
11798eleq1d 2822 . . . . . . . . 9 (𝑛 = 1 → (((𝐶𝑛)‘𝑘) ∈ ℝ ↔ ((𝐶‘1)‘𝑘) ∈ ℝ))
118116, 117imbi12d 345 . . . . . . . 8 (𝑛 = 1 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ) ↔ (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)))
119113, 118, 34vtocl 3511 . . . . . . 7 (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
120110, 111, 112, 119syl21anc 836 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
121109, 2, 29, 120vonhoire 44597 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))) ∈ ℝ)
122108, 121eqeltrd 2838 . . . 4 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) ∈ ℝ)
123 eqid 2737 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1241, 3, 4, 5, 26, 93, 96, 122, 123meaiininc 44412 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
125109, 29, 11iinhoiicc 44599 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))) = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
12633oveq2d 7358 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
127126ixpeq2dva 8776 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
12891, 127eqtrd 2777 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
129128iineq2dv 4971 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
130 vonicclem2.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
131130a1i 11 . . . . . . 7 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
132125, 129, 1313eqtr4d 2787 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
133132eqcomd 2743 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
134133fveq2d 6834 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
135134eqcomd 2743 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
136124, 135breqtrd 5123 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
137 2fveq3 6835 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
138137cbvmptv 5210 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
139138a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
140 vonicclem2.n . . . 4 (𝜑𝑋 ≠ ∅)
141 vonicclem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
142138eqcomi 2746 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1432, 8, 10, 140, 141, 17, 25, 142vonicclem1 44608 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
144139, 143eqbrtrd 5119 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
145 climuni 15361 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
146136, 144, 145syl2anc 585 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wne 2941  wral 3062  Vcvv 3442  wss 3902  c0 4274   ciin 4947   class class class wbr 5097  cmpt 5180  dom cdm 5625  wf 6480  cfv 6484  (class class class)co 7342  Xcixp 8761  Fincfn 8809  cr 10976  0cc0 10977  1c1 10978   + caddc 10980  *cxr 11114   < clt 11115  cle 11116  cmin 11311   / cdiv 11738  cn 12079  cuz 12688  [,)cico 13187  [,]cicc 13188  cli 15293  cprod 15715  volncvoln 44463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cc 10297  ax-ac2 10325  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055  ax-addf 11056  ax-mulf 11057
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-disj 5063  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-tpos 8117  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-oadd 8376  df-omul 8377  df-er 8574  df-map 8693  df-pm 8694  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-fi 9273  df-sup 9304  df-inf 9305  df-oi 9372  df-dju 9763  df-card 9801  df-acn 9804  df-ac 9978  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-q 12795  df-rp 12837  df-xneg 12954  df-xadd 12955  df-xmul 12956  df-ioo 13189  df-ico 13191  df-icc 13192  df-fz 13346  df-fzo 13489  df-fl 13618  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-rlim 15298  df-sum 15498  df-prod 15716  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-starv 17075  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-unif 17083  df-hom 17084  df-cco 17085  df-rest 17231  df-topn 17232  df-0g 17250  df-gsum 17251  df-topgen 17252  df-pt 17253  df-prds 17256  df-xrs 17311  df-qtop 17316  df-imas 17317  df-xps 17319  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-grp 18677  df-minusg 18678  df-mulg 18798  df-subg 18849  df-cntz 19020  df-cmn 19484  df-abl 19485  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-dvr 20020  df-drng 20095  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cn 22484  df-cnp 22485  df-cmp 22644  df-tx 22819  df-hmeo 23012  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-ovol 24734  df-vol 24735  df-salg 44236  df-sumge0 44288  df-mea 44375  df-ome 44415  df-caragen 44417  df-ovoln 44462  df-voln 44464
This theorem is referenced by:  vonicc  44610
  Copyright terms: Public domain W3C validator