MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfle2 Structured version   Visualization version   GIF version

Theorem dfle2 12534
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dfle2 ≤ = ( < ∪ ( I ↾ ℝ*))

Proof of Theorem dfle2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 10699 . 2 Rel ≤
2 ltrelxr 10696 . . . 4 < ⊆ (ℝ* × ℝ*)
3 idssxp 5910 . . . 4 ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*)
42, 3unssi 4160 . . 3 ( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*)
5 relxp 5567 . . 3 Rel (ℝ* × ℝ*)
6 relss 5650 . . 3 (( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ( < ∪ ( I ↾ ℝ*))))
74, 5, 6mp2 9 . 2 Rel ( < ∪ ( I ↾ ℝ*))
8 lerelxr 10698 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
98brel 5611 . . 3 (𝑥𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
104brel 5611 . . 3 (𝑥( < ∪ ( I ↾ ℝ*))𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrleloe 12531 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
12 resieq 5858 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥( I ↾ ℝ*)𝑦𝑥 = 𝑦))
1312orbi2d 912 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
1411, 13bitr4d 284 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦)))
15 brun 5109 . . . 4 (𝑥( < ∪ ( I ↾ ℝ*))𝑦 ↔ (𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦))
1614, 15syl6bbr 291 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑥( < ∪ ( I ↾ ℝ*))𝑦))
179, 10, 16pm5.21nii 382 . 2 (𝑥𝑦𝑥( < ∪ ( I ↾ ℝ*))𝑦)
181, 7, 17eqbrriv 5658 1 ≤ = ( < ∪ ( I ↾ ℝ*))
Colors of variables: wff setvar class
Syntax hints:  wa 398  wo 843   = wceq 1533  wcel 2110  cun 3933  wss 3935   class class class wbr 5058   I cid 5453   × cxp 5547  cres 5551  Rel wrel 5554  *cxr 10668   < clt 10669  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator