MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfle2 Structured version   Visualization version   GIF version

Theorem dfle2 13186
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dfle2 ≤ = ( < ∪ ( I ↾ ℝ*))

Proof of Theorem dfle2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 11323 . 2 Rel ≤
2 ltrelxr 11320 . . . 4 < ⊆ (ℝ* × ℝ*)
3 idssxp 6069 . . . 4 ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*)
42, 3unssi 4201 . . 3 ( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*)
5 relxp 5707 . . 3 Rel (ℝ* × ℝ*)
6 relss 5794 . . 3 (( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ( < ∪ ( I ↾ ℝ*))))
74, 5, 6mp2 9 . 2 Rel ( < ∪ ( I ↾ ℝ*))
8 lerelxr 11322 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
98brel 5754 . . 3 (𝑥𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
104brel 5754 . . 3 (𝑥( < ∪ ( I ↾ ℝ*))𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrleloe 13183 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
12 resieq 6011 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥( I ↾ ℝ*)𝑦𝑥 = 𝑦))
1312orbi2d 915 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
1411, 13bitr4d 282 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦)))
15 brun 5199 . . . 4 (𝑥( < ∪ ( I ↾ ℝ*))𝑦 ↔ (𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦))
1614, 15bitr4di 289 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑥( < ∪ ( I ↾ ℝ*))𝑦))
179, 10, 16pm5.21nii 378 . 2 (𝑥𝑦𝑥( < ∪ ( I ↾ ℝ*))𝑦)
181, 7, 17eqbrriv 5804 1 ≤ = ( < ∪ ( I ↾ ℝ*))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1537  wcel 2106  cun 3961  wss 3963   class class class wbr 5148   I cid 5582   × cxp 5687  cres 5691  Rel wrel 5694  *cxr 11292   < clt 11293  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator