Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfle2 | Structured version Visualization version GIF version |
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
dfle2 | ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerel 10970 | . 2 ⊢ Rel ≤ | |
2 | ltrelxr 10967 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
3 | idssxp 5945 | . . . 4 ⊢ ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*) | |
4 | 2, 3 | unssi 4115 | . . 3 ⊢ ( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) |
5 | relxp 5598 | . . 3 ⊢ Rel (ℝ* × ℝ*) | |
6 | relss 5682 | . . 3 ⊢ (( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ( < ∪ ( I ↾ ℝ*)))) | |
7 | 4, 5, 6 | mp2 9 | . 2 ⊢ Rel ( < ∪ ( I ↾ ℝ*)) |
8 | lerelxr 10969 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
9 | 8 | brel 5643 | . . 3 ⊢ (𝑥 ≤ 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
10 | 4 | brel 5643 | . . 3 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
11 | xrleloe 12807 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) | |
12 | resieq 5891 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥( I ↾ ℝ*)𝑦 ↔ 𝑥 = 𝑦)) | |
13 | 12 | orbi2d 912 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
14 | 11, 13 | bitr4d 281 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦))) |
15 | brun 5121 | . . . 4 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦)) | |
16 | 14, 15 | bitr4di 288 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦)) |
17 | 9, 10, 16 | pm5.21nii 379 | . 2 ⊢ (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦) |
18 | 1, 7, 17 | eqbrriv 5690 | 1 ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 class class class wbr 5070 I cid 5479 × cxp 5578 ↾ cres 5582 Rel wrel 5585 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |