![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfle2 | Structured version Visualization version GIF version |
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
dfle2 | ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerel 11274 | . 2 ⊢ Rel ≤ | |
2 | ltrelxr 11271 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
3 | idssxp 6046 | . . . 4 ⊢ ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*) | |
4 | 2, 3 | unssi 4184 | . . 3 ⊢ ( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) |
5 | relxp 5693 | . . 3 ⊢ Rel (ℝ* × ℝ*) | |
6 | relss 5779 | . . 3 ⊢ (( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ( < ∪ ( I ↾ ℝ*)))) | |
7 | 4, 5, 6 | mp2 9 | . 2 ⊢ Rel ( < ∪ ( I ↾ ℝ*)) |
8 | lerelxr 11273 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
9 | 8 | brel 5739 | . . 3 ⊢ (𝑥 ≤ 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
10 | 4 | brel 5739 | . . 3 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
11 | xrleloe 13119 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) | |
12 | resieq 5990 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥( I ↾ ℝ*)𝑦 ↔ 𝑥 = 𝑦)) | |
13 | 12 | orbi2d 914 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
14 | 11, 13 | bitr4d 281 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦))) |
15 | brun 5198 | . . . 4 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦)) | |
16 | 14, 15 | bitr4di 288 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦)) |
17 | 9, 10, 16 | pm5.21nii 379 | . 2 ⊢ (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦) |
18 | 1, 7, 17 | eqbrriv 5789 | 1 ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ⊆ wss 3947 class class class wbr 5147 I cid 5572 × cxp 5673 ↾ cres 5677 Rel wrel 5680 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |