Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfle2 | Structured version Visualization version GIF version |
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
dfle2 | ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerel 10743 | . 2 ⊢ Rel ≤ | |
2 | ltrelxr 10740 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
3 | idssxp 5888 | . . . 4 ⊢ ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*) | |
4 | 2, 3 | unssi 4090 | . . 3 ⊢ ( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) |
5 | relxp 5542 | . . 3 ⊢ Rel (ℝ* × ℝ*) | |
6 | relss 5625 | . . 3 ⊢ (( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ( < ∪ ( I ↾ ℝ*)))) | |
7 | 4, 5, 6 | mp2 9 | . 2 ⊢ Rel ( < ∪ ( I ↾ ℝ*)) |
8 | lerelxr 10742 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
9 | 8 | brel 5586 | . . 3 ⊢ (𝑥 ≤ 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
10 | 4 | brel 5586 | . . 3 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
11 | xrleloe 12578 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) | |
12 | resieq 5834 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥( I ↾ ℝ*)𝑦 ↔ 𝑥 = 𝑦)) | |
13 | 12 | orbi2d 913 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
14 | 11, 13 | bitr4d 285 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦))) |
15 | brun 5083 | . . . 4 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦)) | |
16 | 14, 15 | bitr4di 292 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦)) |
17 | 9, 10, 16 | pm5.21nii 383 | . 2 ⊢ (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦) |
18 | 1, 7, 17 | eqbrriv 5633 | 1 ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ∪ cun 3856 ⊆ wss 3858 class class class wbr 5032 I cid 5429 × cxp 5522 ↾ cres 5526 Rel wrel 5529 ℝ*cxr 10712 < clt 10713 ≤ cle 10714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-pre-lttri 10649 ax-pre-lttrn 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |