MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfle2 Structured version   Visualization version   GIF version

Theorem dfle2 13046
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dfle2 ≤ = ( < ∪ ( I ↾ ℝ*))

Proof of Theorem dfle2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 11176 . 2 Rel ≤
2 ltrelxr 11173 . . . 4 < ⊆ (ℝ* × ℝ*)
3 idssxp 5998 . . . 4 ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*)
42, 3unssi 4141 . . 3 ( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*)
5 relxp 5634 . . 3 Rel (ℝ* × ℝ*)
6 relss 5722 . . 3 (( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ( < ∪ ( I ↾ ℝ*))))
74, 5, 6mp2 9 . 2 Rel ( < ∪ ( I ↾ ℝ*))
8 lerelxr 11175 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
98brel 5681 . . 3 (𝑥𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
104brel 5681 . . 3 (𝑥( < ∪ ( I ↾ ℝ*))𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrleloe 13043 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
12 resieq 5939 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥( I ↾ ℝ*)𝑦𝑥 = 𝑦))
1312orbi2d 915 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
1411, 13bitr4d 282 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦)))
15 brun 5142 . . . 4 (𝑥( < ∪ ( I ↾ ℝ*))𝑦 ↔ (𝑥 < 𝑦𝑥( I ↾ ℝ*)𝑦))
1614, 15bitr4di 289 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑥( < ∪ ( I ↾ ℝ*))𝑦))
179, 10, 16pm5.21nii 378 . 2 (𝑥𝑦𝑥( < ∪ ( I ↾ ℝ*))𝑦)
181, 7, 17eqbrriv 5731 1 ≤ = ( < ∪ ( I ↾ ℝ*))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1541  wcel 2111  cun 3900  wss 3902   class class class wbr 5091   I cid 5510   × cxp 5614  cres 5618  Rel wrel 5621  *cxr 11145   < clt 11146  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator