![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ledm | Structured version Visualization version GIF version |
Description: The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ledm | ⊢ ℝ* = dom ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleid 13129 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
2 | lerel 11277 | . . . . 5 ⊢ Rel ≤ | |
3 | 2 | releldmi 5947 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
5 | 4 | ssriv 3986 | . 2 ⊢ ℝ* ⊆ dom ≤ |
6 | lerelxr 11276 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
7 | dmss 5902 | . . . 4 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom ≤ ⊆ dom (ℝ* × ℝ*) |
9 | dmxpss 6170 | . . 3 ⊢ dom (ℝ* × ℝ*) ⊆ ℝ* | |
10 | 8, 9 | sstri 3991 | . 2 ⊢ dom ≤ ⊆ ℝ* |
11 | 5, 10 | eqssi 3998 | 1 ⊢ ℝ* = dom ≤ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 class class class wbr 5148 × cxp 5674 dom cdm 5676 ℝ*cxr 11246 ≤ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: lefld 18544 letsr 18545 letopon 22708 leordtval2 22715 leordtval 22716 iccordt 22717 ordtrestixx 22725 icopnfhmeo 24458 iccpnfhmeo 24460 xrhmeo 24461 xrmulc1cn 32905 xrge0iifhmeo 32911 |
Copyright terms: Public domain | W3C validator |