![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ledm | Structured version Visualization version GIF version |
Description: The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ledm | ⊢ ℝ* = dom ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleid 13213 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
2 | lerel 11354 | . . . . 5 ⊢ Rel ≤ | |
3 | 2 | releldmi 5973 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
5 | 4 | ssriv 4012 | . 2 ⊢ ℝ* ⊆ dom ≤ |
6 | lerelxr 11353 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
7 | dmss 5927 | . . . 4 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom ≤ ⊆ dom (ℝ* × ℝ*) |
9 | dmxpss 6202 | . . 3 ⊢ dom (ℝ* × ℝ*) ⊆ ℝ* | |
10 | 8, 9 | sstri 4018 | . 2 ⊢ dom ≤ ⊆ ℝ* |
11 | 5, 10 | eqssi 4025 | 1 ⊢ ℝ* = dom ≤ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 dom cdm 5700 ℝ*cxr 11323 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: lefld 18662 letsr 18663 letopon 23234 leordtval2 23241 leordtval 23242 iccordt 23243 ordtrestixx 23251 icopnfhmeo 24993 iccpnfhmeo 24995 xrhmeo 24996 xrmulc1cn 33876 xrge0iifhmeo 33882 |
Copyright terms: Public domain | W3C validator |