![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ledm | Structured version Visualization version GIF version |
Description: The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ledm | ⊢ ℝ* = dom ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleid 13079 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
2 | lerel 11227 | . . . . 5 ⊢ Rel ≤ | |
3 | 2 | releldmi 5907 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
5 | 4 | ssriv 3952 | . 2 ⊢ ℝ* ⊆ dom ≤ |
6 | lerelxr 11226 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
7 | dmss 5862 | . . . 4 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom ≤ ⊆ dom (ℝ* × ℝ*) |
9 | dmxpss 6127 | . . 3 ⊢ dom (ℝ* × ℝ*) ⊆ ℝ* | |
10 | 8, 9 | sstri 3957 | . 2 ⊢ dom ≤ ⊆ ℝ* |
11 | 5, 10 | eqssi 3964 | 1 ⊢ ℝ* = dom ≤ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ⊆ wss 3914 class class class wbr 5109 × cxp 5635 dom cdm 5637 ℝ*cxr 11196 ≤ cle 11198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-pre-lttri 11133 ax-pre-lttrn 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 |
This theorem is referenced by: lefld 18489 letsr 18490 letopon 22579 leordtval2 22586 leordtval 22587 iccordt 22588 ordtrestixx 22596 icopnfhmeo 24329 iccpnfhmeo 24331 xrhmeo 24332 xrmulc1cn 32575 xrge0iifhmeo 32581 |
Copyright terms: Public domain | W3C validator |