| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ledm | Structured version Visualization version GIF version | ||
| Description: The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| ledm | ⊢ ℝ* = dom ≤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleid 13118 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
| 2 | lerel 11245 | . . . . 5 ⊢ Rel ≤ | |
| 3 | 2 | releldmi 5915 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
| 5 | 4 | ssriv 3953 | . 2 ⊢ ℝ* ⊆ dom ≤ |
| 6 | lerelxr 11244 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 7 | dmss 5869 | . . . 4 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom ≤ ⊆ dom (ℝ* × ℝ*) |
| 9 | dmxpss 6147 | . . 3 ⊢ dom (ℝ* × ℝ*) ⊆ ℝ* | |
| 10 | 8, 9 | sstri 3959 | . 2 ⊢ dom ≤ ⊆ ℝ* |
| 11 | 5, 10 | eqssi 3966 | 1 ⊢ ℝ* = dom ≤ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 × cxp 5639 dom cdm 5641 ℝ*cxr 11214 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: lefld 18558 letsr 18559 letopon 23099 leordtval2 23106 leordtval 23107 iccordt 23108 ordtrestixx 23116 icopnfhmeo 24848 iccpnfhmeo 24850 xrhmeo 24851 xrmulc1cn 33927 xrge0iifhmeo 33933 |
| Copyright terms: Public domain | W3C validator |