MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledm Structured version   Visualization version   GIF version

Theorem ledm 17535
Description: The domain of is *. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.)
Assertion
Ref Expression
ledm * = dom ≤

Proof of Theorem ledm
StepHypRef Expression
1 xrleid 12227 . . . 4 (𝑥 ∈ ℝ*𝑥𝑥)
2 lerel 10390 . . . . 5 Rel ≤
32releldmi 5564 . . . 4 (𝑥𝑥𝑥 ∈ dom ≤ )
41, 3syl 17 . . 3 (𝑥 ∈ ℝ*𝑥 ∈ dom ≤ )
54ssriv 3800 . 2 * ⊆ dom ≤
6 lerelxr 10389 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
7 dmss 5524 . . . 4 ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*))
86, 7ax-mp 5 . . 3 dom ≤ ⊆ dom (ℝ* × ℝ*)
9 dmxpss 5780 . . 3 dom (ℝ* × ℝ*) ⊆ ℝ*
108, 9sstri 3805 . 2 dom ≤ ⊆ ℝ*
115, 10eqssi 3812 1 * = dom ≤
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  wss 3767   class class class wbr 4841   × cxp 5308  dom cdm 5310  *cxr 10360  cle 10362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-pre-lttri 10296  ax-pre-lttrn 10297
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367
This theorem is referenced by:  lefld  17537  letsr  17538  letopon  21334  leordtval2  21341  leordtval  21342  iccordt  21343  ordtrestixx  21351  icopnfhmeo  23066  iccpnfhmeo  23068  xrhmeo  23069  xrmulc1cn  30483  xrge0iifhmeo  30489
  Copyright terms: Public domain W3C validator