MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledm Structured version   Visualization version   GIF version

Theorem ledm 18660
Description: The domain of is *. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.)
Assertion
Ref Expression
ledm * = dom ≤

Proof of Theorem ledm
StepHypRef Expression
1 xrleid 13213 . . . 4 (𝑥 ∈ ℝ*𝑥𝑥)
2 lerel 11354 . . . . 5 Rel ≤
32releldmi 5973 . . . 4 (𝑥𝑥𝑥 ∈ dom ≤ )
41, 3syl 17 . . 3 (𝑥 ∈ ℝ*𝑥 ∈ dom ≤ )
54ssriv 4012 . 2 * ⊆ dom ≤
6 lerelxr 11353 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
7 dmss 5927 . . . 4 ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*))
86, 7ax-mp 5 . . 3 dom ≤ ⊆ dom (ℝ* × ℝ*)
9 dmxpss 6202 . . 3 dom (ℝ* × ℝ*) ⊆ ℝ*
108, 9sstri 4018 . 2 dom ≤ ⊆ ℝ*
115, 10eqssi 4025 1 * = dom ≤
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  *cxr 11323  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  lefld  18662  letsr  18663  letopon  23234  leordtval2  23241  leordtval  23242  iccordt  23243  ordtrestixx  23251  icopnfhmeo  24993  iccpnfhmeo  24995  xrhmeo  24996  xrmulc1cn  33876  xrge0iifhmeo  33882
  Copyright terms: Public domain W3C validator