![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ledm | Structured version Visualization version GIF version |
Description: The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ledm | ⊢ ℝ* = dom ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleid 13156 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
2 | lerel 11302 | . . . . 5 ⊢ Rel ≤ | |
3 | 2 | releldmi 5944 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
5 | 4 | ssriv 3982 | . 2 ⊢ ℝ* ⊆ dom ≤ |
6 | lerelxr 11301 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
7 | dmss 5899 | . . . 4 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom ≤ ⊆ dom (ℝ* × ℝ*) |
9 | dmxpss 6169 | . . 3 ⊢ dom (ℝ* × ℝ*) ⊆ ℝ* | |
10 | 8, 9 | sstri 3987 | . 2 ⊢ dom ≤ ⊆ ℝ* |
11 | 5, 10 | eqssi 3994 | 1 ⊢ ℝ* = dom ≤ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 class class class wbr 5142 × cxp 5670 dom cdm 5672 ℝ*cxr 11271 ≤ cle 11273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-pre-lttri 11206 ax-pre-lttrn 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 |
This theorem is referenced by: lefld 18577 letsr 18578 letopon 23102 leordtval2 23109 leordtval 23110 iccordt 23111 ordtrestixx 23119 icopnfhmeo 24861 iccpnfhmeo 24863 xrhmeo 24864 xrmulc1cn 33521 xrge0iifhmeo 33527 |
Copyright terms: Public domain | W3C validator |