| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ledm | Structured version Visualization version GIF version | ||
| Description: The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| ledm | ⊢ ℝ* = dom ≤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleid 13053 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
| 2 | lerel 11179 | . . . . 5 ⊢ Rel ≤ | |
| 3 | 2 | releldmi 5890 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
| 5 | 4 | ssriv 3939 | . 2 ⊢ ℝ* ⊆ dom ≤ |
| 6 | lerelxr 11178 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 7 | dmss 5845 | . . . 4 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom ≤ ⊆ dom (ℝ* × ℝ*) |
| 9 | dmxpss 6120 | . . 3 ⊢ dom (ℝ* × ℝ*) ⊆ ℝ* | |
| 10 | 8, 9 | sstri 3945 | . 2 ⊢ dom ≤ ⊆ ℝ* |
| 11 | 5, 10 | eqssi 3952 | 1 ⊢ ℝ* = dom ≤ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 class class class wbr 5092 × cxp 5617 dom cdm 5619 ℝ*cxr 11148 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: lefld 18498 letsr 18499 letopon 23090 leordtval2 23097 leordtval 23098 iccordt 23099 ordtrestixx 23107 icopnfhmeo 24839 iccpnfhmeo 24841 xrhmeo 24842 xrmulc1cn 33897 xrge0iifhmeo 33903 |
| Copyright terms: Public domain | W3C validator |