MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znle Structured version   Visualization version   GIF version

Theorem znle 21488
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle.l = (le‘𝑌)
Assertion
Ref Expression
znle (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle
StepHypRef Expression
1 znval.s . . . 4 𝑆 = (RSpan‘ℤring)
2 znval.u . . . 4 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
3 znval.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
4 znval.f . . . 4 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
5 znval.w . . . 4 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 eqid 2725 . . . 4 ((𝐹 ∘ ≤ ) ∘ 𝐹) = ((𝐹 ∘ ≤ ) ∘ 𝐹)
71, 2, 3, 4, 5, 6znval 21487 . . 3 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
87fveq2d 6900 . 2 (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
9 znle.l . 2 = (le‘𝑌)
102ovexi 7453 . . 3 𝑈 ∈ V
11 fvex 6909 . . . . . . 7 (ℤRHom‘𝑈) ∈ V
1211resex 6034 . . . . . 6 ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V
134, 12eqeltri 2821 . . . . 5 𝐹 ∈ V
14 xrex 13009 . . . . . . 7 * ∈ V
1514, 14xpex 7756 . . . . . 6 (ℝ* × ℝ*) ∈ V
16 lerelxr 11314 . . . . . 6 ≤ ⊆ (ℝ* × ℝ*)
1715, 16ssexi 5323 . . . . 5 ≤ ∈ V
1813, 17coex 7938 . . . 4 (𝐹 ∘ ≤ ) ∈ V
1913cnvex 7933 . . . 4 𝐹 ∈ V
2018, 19coex 7938 . . 3 ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V
21 pleid 17356 . . . 4 le = Slot (le‘ndx)
2221setsid 17185 . . 3 ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
2310, 20, 22mp2an 690 . 2 ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
248, 9, 233eqtr4g 2790 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3461  ifcif 4530  {csn 4630  cop 4636   × cxp 5676  ccnv 5677  cres 5680  ccom 5682  cfv 6549  (class class class)co 7419  0cc0 11145  *cxr 11284  cle 11286  0cn0 12510  cz 12596  ..^cfzo 13667   sSet csts 17140  ndxcnx 17170  lecple 17248   /s cqus 17495   ~QG cqg 19090  RSpancrsp 21120  ringczring 21394  ℤRHomczrh 21447  ℤ/nczn 21450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-addf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-starv 17256  df-tset 17260  df-ple 17261  df-ds 17263  df-unif 17264  df-0g 17431  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-grp 18906  df-minusg 18907  df-subg 19091  df-cmn 19754  df-abl 19755  df-mgp 20092  df-rng 20110  df-ur 20139  df-ring 20192  df-cring 20193  df-subrng 20500  df-subrg 20525  df-cnfld 21302  df-zring 21395  df-zn 21454
This theorem is referenced by:  znval2  21489  znle2  21509
  Copyright terms: Public domain W3C validator