| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znle | Structured version Visualization version GIF version | ||
| Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
| znval.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znval.f | ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
| znval.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| znle.l | ⊢ ≤ = (le‘𝑌) |
| Ref | Expression |
|---|---|
| znle | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znval.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
| 3 | znval.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | znval.f | . . . 4 ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) | |
| 5 | znval.w | . . . 4 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 6 | eqid 2735 | . . . 4 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | znval 21496 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
| 8 | 7 | fveq2d 6880 | . 2 ⊢ (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 9 | znle.l | . 2 ⊢ ≤ = (le‘𝑌) | |
| 10 | 2 | ovexi 7439 | . . 3 ⊢ 𝑈 ∈ V |
| 11 | fvex 6889 | . . . . . . 7 ⊢ (ℤRHom‘𝑈) ∈ V | |
| 12 | 11 | resex 6016 | . . . . . 6 ⊢ ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V |
| 13 | 4, 12 | eqeltri 2830 | . . . . 5 ⊢ 𝐹 ∈ V |
| 14 | xrex 13003 | . . . . . . 7 ⊢ ℝ* ∈ V | |
| 15 | 14, 14 | xpex 7747 | . . . . . 6 ⊢ (ℝ* × ℝ*) ∈ V |
| 16 | lerelxr 11298 | . . . . . 6 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 17 | 15, 16 | ssexi 5292 | . . . . 5 ⊢ ≤ ∈ V |
| 18 | 13, 17 | coex 7926 | . . . 4 ⊢ (𝐹 ∘ ≤ ) ∈ V |
| 19 | 13 | cnvex 7921 | . . . 4 ⊢ ◡𝐹 ∈ V |
| 20 | 18, 19 | coex 7926 | . . 3 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V |
| 21 | pleid 17381 | . . . 4 ⊢ le = Slot (le‘ndx) | |
| 22 | 21 | setsid 17226 | . . 3 ⊢ ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 23 | 10, 20, 22 | mp2an 692 | . 2 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
| 24 | 8, 9, 23 | 3eqtr4g 2795 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ifcif 4500 {csn 4601 〈cop 4607 × cxp 5652 ◡ccnv 5653 ↾ cres 5656 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℝ*cxr 11268 ≤ cle 11270 ℕ0cn0 12501 ℤcz 12588 ..^cfzo 13671 sSet csts 17182 ndxcnx 17212 lecple 17278 /s cqus 17519 ~QG cqg 19105 RSpancrsp 21168 ℤringczring 21407 ℤRHomczrh 21460 ℤ/nℤczn 21463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-subrng 20506 df-subrg 20530 df-cnfld 21316 df-zring 21408 df-zn 21467 |
| This theorem is referenced by: znval2 21498 znle2 21514 |
| Copyright terms: Public domain | W3C validator |