![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znle | Structured version Visualization version GIF version |
Description: The value of the β€/nβ€ structure. It is defined as the quotient ring β€ / πβ€, with an "artificial" ordering added to make it a Toset. (In other words, β€/nβ€ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval.s | β’ π = (RSpanββ€ring) |
znval.u | β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) |
znval.y | β’ π = (β€/nβ€βπ) |
znval.f | β’ πΉ = ((β€RHomβπ) βΎ π) |
znval.w | β’ π = if(π = 0, β€, (0..^π)) |
znle.l | β’ β€ = (leβπ) |
Ref | Expression |
---|---|
znle | β’ (π β β0 β β€ = ((πΉ β β€ ) β β‘πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval.s | . . . 4 β’ π = (RSpanββ€ring) | |
2 | znval.u | . . . 4 β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) | |
3 | znval.y | . . . 4 β’ π = (β€/nβ€βπ) | |
4 | znval.f | . . . 4 β’ πΉ = ((β€RHomβπ) βΎ π) | |
5 | znval.w | . . . 4 β’ π = if(π = 0, β€, (0..^π)) | |
6 | eqid 2732 | . . . 4 β’ ((πΉ β β€ ) β β‘πΉ) = ((πΉ β β€ ) β β‘πΉ) | |
7 | 1, 2, 3, 4, 5, 6 | znval 21093 | . . 3 β’ (π β β0 β π = (π sSet β¨(leβndx), ((πΉ β β€ ) β β‘πΉ)β©)) |
8 | 7 | fveq2d 6895 | . 2 β’ (π β β0 β (leβπ) = (leβ(π sSet β¨(leβndx), ((πΉ β β€ ) β β‘πΉ)β©))) |
9 | znle.l | . 2 β’ β€ = (leβπ) | |
10 | 2 | ovexi 7445 | . . 3 β’ π β V |
11 | fvex 6904 | . . . . . . 7 β’ (β€RHomβπ) β V | |
12 | 11 | resex 6029 | . . . . . 6 β’ ((β€RHomβπ) βΎ π) β V |
13 | 4, 12 | eqeltri 2829 | . . . . 5 β’ πΉ β V |
14 | xrex 12973 | . . . . . . 7 β’ β* β V | |
15 | 14, 14 | xpex 7742 | . . . . . 6 β’ (β* Γ β*) β V |
16 | lerelxr 11279 | . . . . . 6 β’ β€ β (β* Γ β*) | |
17 | 15, 16 | ssexi 5322 | . . . . 5 β’ β€ β V |
18 | 13, 17 | coex 7923 | . . . 4 β’ (πΉ β β€ ) β V |
19 | 13 | cnvex 7918 | . . . 4 β’ β‘πΉ β V |
20 | 18, 19 | coex 7923 | . . 3 β’ ((πΉ β β€ ) β β‘πΉ) β V |
21 | pleid 17314 | . . . 4 β’ le = Slot (leβndx) | |
22 | 21 | setsid 17143 | . . 3 β’ ((π β V β§ ((πΉ β β€ ) β β‘πΉ) β V) β ((πΉ β β€ ) β β‘πΉ) = (leβ(π sSet β¨(leβndx), ((πΉ β β€ ) β β‘πΉ)β©))) |
23 | 10, 20, 22 | mp2an 690 | . 2 β’ ((πΉ β β€ ) β β‘πΉ) = (leβ(π sSet β¨(leβndx), ((πΉ β β€ ) β β‘πΉ)β©)) |
24 | 8, 9, 23 | 3eqtr4g 2797 | 1 β’ (π β β0 β β€ = ((πΉ β β€ ) β β‘πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 ifcif 4528 {csn 4628 β¨cop 4634 Γ cxp 5674 β‘ccnv 5675 βΎ cres 5678 β ccom 5680 βcfv 6543 (class class class)co 7411 0cc0 11112 β*cxr 11249 β€ cle 11251 β0cn0 12474 β€cz 12560 ..^cfzo 13629 sSet csts 17098 ndxcnx 17128 lecple 17206 /s cqus 17453 ~QG cqg 19004 RSpancrsp 20790 β€ringczring 21023 β€RHomczrh 21055 β€/nβ€czn 21058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-0g 17389 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-grp 18824 df-minusg 18825 df-subg 19005 df-cmn 19652 df-mgp 19990 df-ur 20007 df-ring 20060 df-cring 20061 df-subrg 20321 df-cnfld 20951 df-zring 21024 df-zn 21062 |
This theorem is referenced by: znval2 21095 znle2 21115 |
Copyright terms: Public domain | W3C validator |