MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znle Structured version   Visualization version   GIF version

Theorem znle 20367
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle.l = (le‘𝑌)
Assertion
Ref Expression
znle (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle
StepHypRef Expression
1 znval.s . . . 4 𝑆 = (RSpan‘ℤring)
2 znval.u . . . 4 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
3 znval.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
4 znval.f . . . 4 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
5 znval.w . . . 4 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 eqid 2739 . . . 4 ((𝐹 ∘ ≤ ) ∘ 𝐹) = ((𝐹 ∘ ≤ ) ∘ 𝐹)
71, 2, 3, 4, 5, 6znval 20366 . . 3 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
87fveq2d 6690 . 2 (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
9 znle.l . 2 = (le‘𝑌)
102ovexi 7216 . . 3 𝑈 ∈ V
11 fvex 6699 . . . . . . 7 (ℤRHom‘𝑈) ∈ V
1211resex 5883 . . . . . 6 ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V
134, 12eqeltri 2830 . . . . 5 𝐹 ∈ V
14 xrex 12481 . . . . . . 7 * ∈ V
1514, 14xpex 7506 . . . . . 6 (ℝ* × ℝ*) ∈ V
16 lerelxr 10794 . . . . . 6 ≤ ⊆ (ℝ* × ℝ*)
1715, 16ssexi 5200 . . . . 5 ≤ ∈ V
1813, 17coex 7673 . . . 4 (𝐹 ∘ ≤ ) ∈ V
1913cnvex 7668 . . . 4 𝐹 ∈ V
2018, 19coex 7673 . . 3 ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V
21 pleid 16782 . . . 4 le = Slot (le‘ndx)
2221setsid 16653 . . 3 ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
2310, 20, 22mp2an 692 . 2 ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
248, 9, 233eqtr4g 2799 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  Vcvv 3400  ifcif 4424  {csn 4526  cop 4532   × cxp 5533  ccnv 5534  cres 5537  ccom 5539  cfv 6349  (class class class)co 7182  0cc0 10627  *cxr 10764  cle 10766  0cn0 11988  cz 12074  ..^cfzo 13136  ndxcnx 16595   sSet csts 16596  lecple 16687   /s cqus 16893   ~QG cqg 18405  RSpancrsp 20074  ringzring 20301  ℤRHomczrh 20332  ℤ/nczn 20335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-fz 12994  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-0g 16830  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-grp 18234  df-minusg 18235  df-subg 18406  df-cmn 19038  df-mgp 19371  df-ur 19383  df-ring 19430  df-cring 19431  df-subrg 19664  df-cnfld 20230  df-zring 20302  df-zn 20339
This theorem is referenced by:  znval2  20368  znle2  20384
  Copyright terms: Public domain W3C validator