MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lern Structured version   Visualization version   GIF version

Theorem lern 17831
Description: The range of is *. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
lern * = ran ≤

Proof of Theorem lern
StepHypRef Expression
1 xrleid 12536 . . . 4 (𝑥 ∈ ℝ*𝑥𝑥)
2 lerel 10698 . . . . 5 Rel ≤
32relelrni 5787 . . . 4 (𝑥𝑥𝑥 ∈ ran ≤ )
41, 3syl 17 . . 3 (𝑥 ∈ ℝ*𝑥 ∈ ran ≤ )
54ssriv 3922 . 2 * ⊆ ran ≤
6 lerelxr 10697 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
76rnssi 5778 . . 3 ran ≤ ⊆ ran (ℝ* × ℝ*)
8 rnxpss 6000 . . 3 ran (ℝ* × ℝ*) ⊆ ℝ*
97, 8sstri 3927 . 2 ran ≤ ⊆ ℝ*
105, 9eqssi 3934 1 * = ran ≤
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2112   class class class wbr 5033   × cxp 5521  ran crn 5524  *cxr 10667  cle 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-pre-lttri 10604  ax-pre-lttrn 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674
This theorem is referenced by:  lefld  17832  cnvordtrestixx  31270  xrge0iifhmeo  31293
  Copyright terms: Public domain W3C validator