MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lern Structured version   Visualization version   GIF version

Theorem lern 18540
Description: The range of is *. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
lern * = ran ≤

Proof of Theorem lern
StepHypRef Expression
1 xrleid 13126 . . . 4 (𝑥 ∈ ℝ*𝑥𝑥)
2 lerel 11274 . . . . 5 Rel ≤
32relelrni 5946 . . . 4 (𝑥𝑥𝑥 ∈ ran ≤ )
41, 3syl 17 . . 3 (𝑥 ∈ ℝ*𝑥 ∈ ran ≤ )
54ssriv 3985 . 2 * ⊆ ran ≤
6 lerelxr 11273 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
76rnssi 5937 . . 3 ran ≤ ⊆ ran (ℝ* × ℝ*)
8 rnxpss 6168 . . 3 ran (ℝ* × ℝ*) ⊆ ℝ*
97, 8sstri 3990 . 2 ran ≤ ⊆ ℝ*
105, 9eqssi 3997 1 * = ran ≤
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106   class class class wbr 5147   × cxp 5673  ran crn 5676  *cxr 11243  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250
This theorem is referenced by:  lefld  18541  cnvordtrestixx  32881  xrge0iifhmeo  32904
  Copyright terms: Public domain W3C validator