| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lern | Structured version Visualization version GIF version | ||
| Description: The range of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| lern | ⊢ ℝ* = ran ≤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleid 13050 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
| 2 | lerel 11176 | . . . . 5 ⊢ Rel ≤ | |
| 3 | 2 | relelrni 5888 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ ran ≤ ) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ ran ≤ ) |
| 5 | 4 | ssriv 3933 | . 2 ⊢ ℝ* ⊆ ran ≤ |
| 6 | lerelxr 11175 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 7 | 6 | rnssi 5879 | . . 3 ⊢ ran ≤ ⊆ ran (ℝ* × ℝ*) |
| 8 | rnxpss 6119 | . . 3 ⊢ ran (ℝ* × ℝ*) ⊆ ℝ* | |
| 9 | 7, 8 | sstri 3939 | . 2 ⊢ ran ≤ ⊆ ℝ* |
| 10 | 5, 9 | eqssi 3946 | 1 ⊢ ℝ* = ran ≤ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 class class class wbr 5089 × cxp 5612 ran crn 5615 ℝ*cxr 11145 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: lefld 18498 cnvordtrestixx 33926 xrge0iifhmeo 33949 |
| Copyright terms: Public domain | W3C validator |