| Step | Hyp | Ref
| Expression |
| 1 | | lerel 11304 |
. . 3
⊢ Rel
≤ |
| 2 | | lerelxr 11303 |
. . . . . . . . . . 11
⊢ ≤
⊆ (ℝ* × ℝ*) |
| 3 | 2 | brel 5724 |
. . . . . . . . . 10
⊢ (𝑥 ≤ 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈
ℝ*)) |
| 4 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → (𝑥 ∈ ℝ* ∧ 𝑦 ∈
ℝ*)) |
| 5 | 4 | simpld 494 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ∈ ℝ*) |
| 6 | 4 | simprd 495 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑦 ∈ ℝ*) |
| 7 | 2 | brel 5724 |
. . . . . . . . . 10
⊢ (𝑦 ≤ 𝑧 → (𝑦 ∈ ℝ* ∧ 𝑧 ∈
ℝ*)) |
| 8 | 7 | simprd 495 |
. . . . . . . . 9
⊢ (𝑦 ≤ 𝑧 → 𝑧 ∈ ℝ*) |
| 9 | 8 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑧 ∈ ℝ*) |
| 10 | 5, 6, 9 | 3jca 1128 |
. . . . . . 7
⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*
∧ 𝑧 ∈
ℝ*)) |
| 11 | | xrletr 13179 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ 𝑧
∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| 12 | 10, 11 | mpcom 38 |
. . . . . 6
⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧) |
| 13 | 12 | ax-gen 1795 |
. . . . 5
⊢
∀𝑧((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧) |
| 14 | 13 | gen2 1796 |
. . . 4
⊢
∀𝑥∀𝑦∀𝑧((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧) |
| 15 | | cotr 6104 |
. . . 4
⊢ (( ≤
∘ ≤ ) ⊆ ≤ ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| 16 | 14, 15 | mpbir 231 |
. . 3
⊢ ( ≤
∘ ≤ ) ⊆ ≤ |
| 17 | | asymref 6110 |
. . . 4
⊢ (( ≤
∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) ↔ ∀𝑥 ∈ ∪ ∪ ≤ ∀𝑦((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ↔ 𝑥 = 𝑦)) |
| 18 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥)) → (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥)) |
| 19 | 2 | brel 5724 |
. . . . . . . . . . . 12
⊢ (𝑦 ≤ 𝑥 → (𝑦 ∈ ℝ* ∧ 𝑥 ∈
ℝ*)) |
| 20 | 19 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝑦 ≤ 𝑥 → 𝑦 ∈ ℝ*) |
| 21 | 20 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑦 ∈ ℝ*) |
| 22 | | xrletri3 13175 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) |
| 23 | 21, 22 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥)) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) |
| 24 | 18, 23 | mpbird 257 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑥 = 𝑦) |
| 25 | 24 | ex 412 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ*
→ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
| 26 | | xrleid 13172 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ*
→ 𝑥 ≤ 𝑥) |
| 27 | 26, 26 | jca 511 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ*
→ (𝑥 ≤ 𝑥 ∧ 𝑥 ≤ 𝑥)) |
| 28 | | breq2 5128 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝑥 ↔ 𝑥 ≤ 𝑦)) |
| 29 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝑥 ↔ 𝑦 ≤ 𝑥)) |
| 30 | 28, 29 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ≤ 𝑥 ∧ 𝑥 ≤ 𝑥) ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) |
| 31 | 27, 30 | syl5ibcom 245 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ*
→ (𝑥 = 𝑦 → (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) |
| 32 | 25, 31 | impbid 212 |
. . . . . 6
⊢ (𝑥 ∈ ℝ*
→ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ↔ 𝑥 = 𝑦)) |
| 33 | 32 | alrimiv 1927 |
. . . . 5
⊢ (𝑥 ∈ ℝ*
→ ∀𝑦((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ↔ 𝑥 = 𝑦)) |
| 34 | | lefld 18607 |
. . . . . 6
⊢
ℝ* = ∪ ∪ ≤ |
| 35 | 34 | eqcomi 2745 |
. . . . 5
⊢ ∪ ∪ ≤ =
ℝ* |
| 36 | 33, 35 | eleq2s 2853 |
. . . 4
⊢ (𝑥 ∈ ∪ ∪ ≤ → ∀𝑦((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ↔ 𝑥 = 𝑦)) |
| 37 | 17, 36 | mprgbir 3059 |
. . 3
⊢ ( ≤
∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) |
| 38 | | xrex 13008 |
. . . . . 6
⊢
ℝ* ∈ V |
| 39 | 38, 38 | xpex 7752 |
. . . . 5
⊢
(ℝ* × ℝ*) ∈
V |
| 40 | 39, 2 | ssexi 5297 |
. . . 4
⊢ ≤
∈ V |
| 41 | | isps 18583 |
. . . 4
⊢ ( ≤
∈ V → ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘
≤ ) ⊆ ≤ ∧ ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ )))) |
| 42 | 40, 41 | ax-mp 5 |
. . 3
⊢ ( ≤
∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧
( ≤ ∩ ◡ ≤ ) = ( I ↾
∪ ∪ ≤
))) |
| 43 | 1, 16, 37, 42 | mpbir3an 1342 |
. 2
⊢ ≤
∈ PosetRel |
| 44 | | xrletri 13174 |
. . . 4
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
| 45 | 44 | rgen2 3185 |
. . 3
⊢
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) |
| 46 | | qfto 6115 |
. . 3
⊢
((ℝ* × ℝ*) ⊆ ( ≤ ∪
◡ ≤ ) ↔ ∀𝑥 ∈ ℝ*
∀𝑦 ∈
ℝ* (𝑥 ≤
𝑦 ∨ 𝑦 ≤ 𝑥)) |
| 47 | 45, 46 | mpbir 231 |
. 2
⊢
(ℝ* × ℝ*) ⊆ ( ≤ ∪
◡ ≤ ) |
| 48 | | ledm 18605 |
. . 3
⊢
ℝ* = dom ≤ |
| 49 | 48 | istsr 18598 |
. 2
⊢ ( ≤
∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ (ℝ*
× ℝ*) ⊆ ( ≤ ∪ ◡ ≤ ))) |
| 50 | 43, 47, 49 | mpbir2an 711 |
1
⊢ ≤
∈ TosetRel |