MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letsr Structured version   Visualization version   GIF version

Theorem letsr 18663
Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letsr ≤ ∈ TosetRel

Proof of Theorem letsr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 11354 . . 3 Rel ≤
2 lerelxr 11353 . . . . . . . . . . 11 ≤ ⊆ (ℝ* × ℝ*)
32brel 5765 . . . . . . . . . 10 (𝑥𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
43adantr 480 . . . . . . . . 9 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
54simpld 494 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑥 ∈ ℝ*)
64simprd 495 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑦 ∈ ℝ*)
72brel 5765 . . . . . . . . . 10 (𝑦𝑧 → (𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
87simprd 495 . . . . . . . . 9 (𝑦𝑧𝑧 ∈ ℝ*)
98adantl 481 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑧 ∈ ℝ*)
105, 6, 93jca 1128 . . . . . . 7 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
11 xrletr 13220 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1210, 11mpcom 38 . . . . . 6 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1312ax-gen 1793 . . . . 5 𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1413gen2 1794 . . . 4 𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
15 cotr 6142 . . . 4 (( ≤ ∘ ≤ ) ⊆ ≤ ↔ ∀𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1614, 15mpbir 231 . . 3 ( ≤ ∘ ≤ ) ⊆ ≤
17 asymref 6148 . . . 4 (( ≤ ∩ ≤ ) = ( I ↾ ≤ ) ↔ ∀𝑥 ≤ ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
18 simpr 484 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥𝑦𝑦𝑥))
192brel 5765 . . . . . . . . . . . 12 (𝑦𝑥 → (𝑦 ∈ ℝ*𝑥 ∈ ℝ*))
2019simpld 494 . . . . . . . . . . 11 (𝑦𝑥𝑦 ∈ ℝ*)
2120adantl 481 . . . . . . . . . 10 ((𝑥𝑦𝑦𝑥) → 𝑦 ∈ ℝ*)
22 xrletri3 13216 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2321, 22sylan2 592 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2418, 23mpbird 257 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → 𝑥 = 𝑦)
2524ex 412 . . . . . . 7 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
26 xrleid 13213 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥𝑥)
2726, 26jca 511 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑥𝑥𝑥𝑥))
28 breq2 5170 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
29 breq1 5169 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
3028, 29anbi12d 631 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝑥𝑥𝑥) ↔ (𝑥𝑦𝑦𝑥)))
3127, 30syl5ibcom 245 . . . . . . 7 (𝑥 ∈ ℝ* → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
3225, 31impbid 212 . . . . . 6 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3332alrimiv 1926 . . . . 5 (𝑥 ∈ ℝ* → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
34 lefld 18662 . . . . . 6 * =
3534eqcomi 2749 . . . . 5 ≤ = ℝ*
3633, 35eleq2s 2862 . . . 4 (𝑥 ≤ → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3717, 36mprgbir 3074 . . 3 ( ≤ ∩ ≤ ) = ( I ↾ ≤ )
38 xrex 13052 . . . . . 6 * ∈ V
3938, 38xpex 7788 . . . . 5 (ℝ* × ℝ*) ∈ V
4039, 2ssexi 5340 . . . 4 ≤ ∈ V
41 isps 18638 . . . 4 ( ≤ ∈ V → ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ ))))
4240, 41ax-mp 5 . . 3 ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ )))
431, 16, 37, 42mpbir3an 1341 . 2 ≤ ∈ PosetRel
44 xrletri 13215 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
4544rgen2 3205 . . 3 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥)
46 qfto 6153 . . 3 ((ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ ) ↔ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥))
4745, 46mpbir 231 . 2 (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )
48 ledm 18660 . . 3 * = dom ≤
4948istsr 18653 . 2 ( ≤ ∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )))
5043, 47, 49mpbir2an 710 1 ≤ ∈ TosetRel
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  cin 3975  wss 3976   cuni 4931   class class class wbr 5166   I cid 5592   × cxp 5698  ccnv 5699  cres 5702  ccom 5704  Rel wrel 5705  *cxr 11323  cle 11325  PosetRelcps 18634   TosetRel ctsr 18635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ps 18636  df-tsr 18637
This theorem is referenced by:  cnfldle  21398  cnfldfun  21401  cnfldfunALT  21402  cnfldleOLD  21411  cnfldfunOLD  21414  cnfldfunALTOLD  21415  cnfldfunALTOLDOLD  21416  letopon  23234  leordtval2  23241  leordtval  23242  iccordt  23243  ordtrestixx  23251  xrhaus  23414  xrge0tsms  24875  icopnfhmeo  24993  iccpnfhmeo  24995  xrhmeo  24996  xrge0tsmsd  33041  cnvordtrestixx  33859  xrmulc1cn  33876  xrge0iifhmeo  33882  poimir  37613
  Copyright terms: Public domain W3C validator