MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letsr Structured version   Visualization version   GIF version

Theorem letsr 18482
Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letsr ≤ ∈ TosetRel

Proof of Theorem letsr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 11219 . . 3 Rel ≤
2 lerelxr 11218 . . . . . . . . . . 11 ≤ ⊆ (ℝ* × ℝ*)
32brel 5697 . . . . . . . . . 10 (𝑥𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
43adantr 481 . . . . . . . . 9 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
54simpld 495 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑥 ∈ ℝ*)
64simprd 496 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑦 ∈ ℝ*)
72brel 5697 . . . . . . . . . 10 (𝑦𝑧 → (𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
87simprd 496 . . . . . . . . 9 (𝑦𝑧𝑧 ∈ ℝ*)
98adantl 482 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑧 ∈ ℝ*)
105, 6, 93jca 1128 . . . . . . 7 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
11 xrletr 13077 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1210, 11mpcom 38 . . . . . 6 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1312ax-gen 1797 . . . . 5 𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1413gen2 1798 . . . 4 𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
15 cotr 6064 . . . 4 (( ≤ ∘ ≤ ) ⊆ ≤ ↔ ∀𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1614, 15mpbir 230 . . 3 ( ≤ ∘ ≤ ) ⊆ ≤
17 asymref 6070 . . . 4 (( ≤ ∩ ≤ ) = ( I ↾ ≤ ) ↔ ∀𝑥 ≤ ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
18 simpr 485 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥𝑦𝑦𝑥))
192brel 5697 . . . . . . . . . . . 12 (𝑦𝑥 → (𝑦 ∈ ℝ*𝑥 ∈ ℝ*))
2019simpld 495 . . . . . . . . . . 11 (𝑦𝑥𝑦 ∈ ℝ*)
2120adantl 482 . . . . . . . . . 10 ((𝑥𝑦𝑦𝑥) → 𝑦 ∈ ℝ*)
22 xrletri3 13073 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2321, 22sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2418, 23mpbird 256 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → 𝑥 = 𝑦)
2524ex 413 . . . . . . 7 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
26 xrleid 13070 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥𝑥)
2726, 26jca 512 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑥𝑥𝑥𝑥))
28 breq2 5109 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
29 breq1 5108 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
3028, 29anbi12d 631 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝑥𝑥𝑥) ↔ (𝑥𝑦𝑦𝑥)))
3127, 30syl5ibcom 244 . . . . . . 7 (𝑥 ∈ ℝ* → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
3225, 31impbid 211 . . . . . 6 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3332alrimiv 1930 . . . . 5 (𝑥 ∈ ℝ* → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
34 lefld 18481 . . . . . 6 * =
3534eqcomi 2745 . . . . 5 ≤ = ℝ*
3633, 35eleq2s 2856 . . . 4 (𝑥 ≤ → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3717, 36mprgbir 3071 . . 3 ( ≤ ∩ ≤ ) = ( I ↾ ≤ )
38 xrex 12912 . . . . . 6 * ∈ V
3938, 38xpex 7687 . . . . 5 (ℝ* × ℝ*) ∈ V
4039, 2ssexi 5279 . . . 4 ≤ ∈ V
41 isps 18457 . . . 4 ( ≤ ∈ V → ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ ))))
4240, 41ax-mp 5 . . 3 ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ )))
431, 16, 37, 42mpbir3an 1341 . 2 ≤ ∈ PosetRel
44 xrletri 13072 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
4544rgen2 3194 . . 3 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥)
46 qfto 6075 . . 3 ((ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ ) ↔ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥))
4745, 46mpbir 230 . 2 (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )
48 ledm 18479 . . 3 * = dom ≤
4948istsr 18472 . 2 ( ≤ ∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )))
5043, 47, 49mpbir2an 709 1 ≤ ∈ TosetRel
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cun 3908  cin 3909  wss 3910   cuni 4865   class class class wbr 5105   I cid 5530   × cxp 5631  ccnv 5632  cres 5635  ccom 5637  Rel wrel 5638  *cxr 11188  cle 11190  PosetRelcps 18453   TosetRel ctsr 18454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-ps 18455  df-tsr 18456
This theorem is referenced by:  cnfldle  20805  cnfldfun  20808  cnfldfunALT  20809  cnfldfunALTOLD  20810  letopon  22556  leordtval2  22563  leordtval  22564  iccordt  22565  ordtrestixx  22573  xrhaus  22736  xrge0tsms  24197  icopnfhmeo  24306  iccpnfhmeo  24308  xrhmeo  24309  xrge0tsmsd  31899  cnvordtrestixx  32494  xrmulc1cn  32511  xrge0iifhmeo  32517  poimir  36111
  Copyright terms: Public domain W3C validator