MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerel Structured version   Visualization version   GIF version

Theorem lerel 11183
Description: "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerel Rel ≤

Proof of Theorem lerel
StepHypRef Expression
1 lerelxr 11182 . 2 ≤ ⊆ (ℝ* × ℝ*)
2 relxp 5637 . 2 Rel (ℝ* × ℝ*)
3 relss 5726 . 2 ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ ))
41, 2, 3mp2 9 1 Rel ≤
Colors of variables: wff setvar class
Syntax hints:  wss 3898   × cxp 5617  Rel wrel 5624  *cxr 11152  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-ss 3915  df-opab 5156  df-xp 5625  df-rel 5626  df-le 11159
This theorem is referenced by:  dfle2  13048  dflt2  13049  ledm  18498  lern  18499  lefld  18500  letsr  18501  dvle  25940  gtiso  32686
  Copyright terms: Public domain W3C validator