![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lerel | Structured version Visualization version GIF version |
Description: "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
lerel | ⊢ Rel ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerelxr 11353 | . 2 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
2 | relxp 5718 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5805 | . 2 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel ≤ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 × cxp 5698 Rel wrel 5705 ℝ*cxr 11323 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-le 11330 |
This theorem is referenced by: dfle2 13209 dflt2 13210 ledm 18660 lern 18661 lefld 18662 letsr 18663 dvle 26066 gtiso 32712 |
Copyright terms: Public domain | W3C validator |