MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerel Structured version   Visualization version   GIF version

Theorem lerel 11245
Description: "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerel Rel ≤

Proof of Theorem lerel
StepHypRef Expression
1 lerelxr 11244 . 2 ≤ ⊆ (ℝ* × ℝ*)
2 relxp 5659 . 2 Rel (ℝ* × ℝ*)
3 relss 5747 . 2 ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ ))
41, 2, 3mp2 9 1 Rel ≤
Colors of variables: wff setvar class
Syntax hints:  wss 3917   × cxp 5639  Rel wrel 5646  *cxr 11214  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-ss 3934  df-opab 5173  df-xp 5647  df-rel 5648  df-le 11221
This theorem is referenced by:  dfle2  13114  dflt2  13115  ledm  18556  lern  18557  lefld  18558  letsr  18559  dvle  25919  gtiso  32631
  Copyright terms: Public domain W3C validator