MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerel Structured version   Visualization version   GIF version

Theorem lerel 11354
Description: "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerel Rel ≤

Proof of Theorem lerel
StepHypRef Expression
1 lerelxr 11353 . 2 ≤ ⊆ (ℝ* × ℝ*)
2 relxp 5718 . 2 Rel (ℝ* × ℝ*)
3 relss 5805 . 2 ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ ))
41, 2, 3mp2 9 1 Rel ≤
Colors of variables: wff setvar class
Syntax hints:  wss 3976   × cxp 5698  Rel wrel 5705  *cxr 11323  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-opab 5229  df-xp 5706  df-rel 5707  df-le 11330
This theorem is referenced by:  dfle2  13209  dflt2  13210  ledm  18660  lern  18661  lefld  18662  letsr  18663  dvle  26066  gtiso  32712
  Copyright terms: Public domain W3C validator