MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerel Structured version   Visualization version   GIF version

Theorem lerel 11323
Description: "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerel Rel ≤

Proof of Theorem lerel
StepHypRef Expression
1 lerelxr 11322 . 2 ≤ ⊆ (ℝ* × ℝ*)
2 relxp 5707 . 2 Rel (ℝ* × ℝ*)
3 relss 5794 . 2 ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ ))
41, 2, 3mp2 9 1 Rel ≤
Colors of variables: wff setvar class
Syntax hints:  wss 3963   × cxp 5687  Rel wrel 5694  *cxr 11292  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-ss 3980  df-opab 5211  df-xp 5695  df-rel 5696  df-le 11299
This theorem is referenced by:  dfle2  13186  dflt2  13187  ledm  18648  lern  18649  lefld  18650  letsr  18651  dvle  26061  gtiso  32716
  Copyright terms: Public domain W3C validator