| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lerel | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| lerel | ⊢ Rel ≤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lerelxr 11182 | . 2 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 2 | relxp 5637 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
| 3 | relss 5726 | . 2 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ )) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel ≤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 × cxp 5617 Rel wrel 5624 ℝ*cxr 11152 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 df-le 11159 |
| This theorem is referenced by: dfle2 13048 dflt2 13049 ledm 18498 lern 18499 lefld 18500 letsr 18501 dvle 25940 gtiso 32686 |
| Copyright terms: Public domain | W3C validator |