MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni2 Structured version   Visualization version   GIF version

Theorem limuni2 6451
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2 (Lim 𝐴 → Lim 𝐴)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 6450 . . 3 (Lim 𝐴𝐴 = 𝐴)
2 limeq 6401 . . 3 (𝐴 = 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
31, 2syl 17 . 2 (Lim 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
43ibi 267 1 (Lim 𝐴 → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1538   cuni 4913  Lim wlim 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-v 3481  df-ss 3981  df-uni 4914  df-tr 5267  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-ord 6392  df-lim 6394
This theorem is referenced by:  rankxplim2  9924  rankxplim3  9925
  Copyright terms: Public domain W3C validator