MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni2 Structured version   Visualization version   GIF version

Theorem limuni2 6397
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2 (Lim 𝐴 → Lim 𝐴)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 6396 . . 3 (Lim 𝐴𝐴 = 𝐴)
2 limeq 6346 . . 3 (𝐴 = 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
31, 2syl 17 . 2 (Lim 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
43ibi 267 1 (Lim 𝐴 → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   cuni 4873  Lim wlim 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-v 3452  df-ss 3933  df-uni 4874  df-tr 5217  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-lim 6339
This theorem is referenced by:  rankxplim2  9839  rankxplim3  9840
  Copyright terms: Public domain W3C validator