| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni2 | Structured version Visualization version GIF version | ||
| Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
| Ref | Expression |
|---|---|
| limuni2 | ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni 6425 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 2 | limeq 6375 | . . 3 ⊢ (𝐴 = ∪ 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (Lim 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) |
| 4 | 3 | ibi 267 | 1 ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∪ cuni 4887 Lim wlim 6364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-v 3465 df-ss 3948 df-uni 4888 df-tr 5240 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-lim 6368 |
| This theorem is referenced by: rankxplim2 9902 rankxplim3 9903 |
| Copyright terms: Public domain | W3C validator |