![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limuni2 | Structured version Visualization version GIF version |
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
Ref | Expression |
---|---|
limuni2 | ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 6450 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | limeq 6401 | . . 3 ⊢ (𝐴 = ∪ 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (Lim 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) |
4 | 3 | ibi 267 | 1 ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1538 ∪ cuni 4913 Lim wlim 6390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-v 3481 df-ss 3981 df-uni 4914 df-tr 5267 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-ord 6392 df-lim 6394 |
This theorem is referenced by: rankxplim2 9924 rankxplim3 9925 |
Copyright terms: Public domain | W3C validator |