| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni2 | Structured version Visualization version GIF version | ||
| Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
| Ref | Expression |
|---|---|
| limuni2 | ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni 6368 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 2 | limeq 6318 | . . 3 ⊢ (𝐴 = ∪ 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (Lim 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) |
| 4 | 3 | ibi 267 | 1 ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∪ cuni 4859 Lim wlim 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-v 3438 df-ss 3919 df-uni 4860 df-tr 5199 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-lim 6311 |
| This theorem is referenced by: rankxplim2 9773 rankxplim3 9774 |
| Copyright terms: Public domain | W3C validator |