MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni2 Structured version   Visualization version   GIF version

Theorem limuni2 6433
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2 (Lim 𝐴 → Lim 𝐴)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 6432 . . 3 (Lim 𝐴𝐴 = 𝐴)
2 limeq 6383 . . 3 (𝐴 = 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
31, 2syl 17 . 2 (Lim 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
43ibi 266 1 (Lim 𝐴 → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533   cuni 4909  Lim wlim 6372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-v 3463  df-ss 3961  df-uni 4910  df-tr 5267  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-lim 6376
This theorem is referenced by:  rankxplim2  9905  rankxplim3  9906
  Copyright terms: Public domain W3C validator