| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version | ||
| Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| 0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim2 6390 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 ∪ cuni 4871 Ord word 6331 Lim wlim 6333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-lim 6337 |
| This theorem is referenced by: limuni3 7828 peano1 7865 oe1m 8509 oalimcl 8524 oaass 8525 oarec 8526 omlimcl 8542 odi 8543 oen0 8550 oewordri 8556 oelim2 8559 oeoalem 8560 oeoelem 8562 limensuci 9117 rankxplim2 9833 rankxplim3 9834 r1limwun 10689 constr01 33732 omlimcl2 43231 oe0suclim 43266 |
| Copyright terms: Public domain | W3C validator |