Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version |
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 6309 | . . . 4 ⊢ ¬ Lim ∅ | |
2 | limeq 6263 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
3 | 1, 2 | mtbiri 326 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
4 | 3 | necon2ai 2972 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
5 | limord 6310 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
6 | ord0eln0 6305 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (Lim 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
8 | 4, 7 | mpbird 256 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 Ord word 6250 Lim wlim 6252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-lim 6256 |
This theorem is referenced by: limuni3 7674 peano1 7710 oe1m 8338 oalimcl 8353 oaass 8354 oarec 8355 omlimcl 8371 odi 8372 oen0 8379 oewordri 8385 oelim2 8388 oeoalem 8389 oeoelem 8391 limensuci 8889 rankxplim2 9569 rankxplim3 9570 r1limwun 10423 |
Copyright terms: Public domain | W3C validator |