| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version | ||
| Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| 0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim2 6371 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∅c0 4282 ∪ cuni 4860 Ord word 6312 Lim wlim 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6316 df-lim 6318 |
| This theorem is referenced by: limuni3 7790 peano1 7827 oe1m 8468 oalimcl 8483 oaass 8484 oarec 8485 omlimcl 8501 odi 8502 oen0 8509 oewordri 8515 oelim2 8518 oeoalem 8519 oeoelem 8521 limensuci 9075 rankxplim2 9782 rankxplim3 9783 r1limwun 10636 constr01 33778 r11 35128 rankfilimbi 35135 omlimcl2 43362 oe0suclim 43397 |
| Copyright terms: Public domain | W3C validator |