| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version | ||
| Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| 0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim2 6369 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4286 ∪ cuni 4861 Ord word 6310 Lim wlim 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-lim 6316 |
| This theorem is referenced by: limuni3 7792 peano1 7829 oe1m 8470 oalimcl 8485 oaass 8486 oarec 8487 omlimcl 8503 odi 8504 oen0 8511 oewordri 8517 oelim2 8520 oeoalem 8521 oeoelem 8523 limensuci 9077 rankxplim2 9795 rankxplim3 9796 r1limwun 10649 constr01 33711 omlimcl2 43218 oe0suclim 43253 |
| Copyright terms: Public domain | W3C validator |