MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ellim Structured version   Visualization version   GIF version

Theorem 0ellim 6328
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
0ellim (Lim 𝐴 → ∅ ∈ 𝐴)

Proof of Theorem 0ellim
StepHypRef Expression
1 nlim0 6324 . . . 4 ¬ Lim ∅
2 limeq 6278 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2973 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 limord 6325 . . 3 (Lim 𝐴 → Ord 𝐴)
6 ord0eln0 6320 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
75, 6syl 17 . 2 (Lim 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
84, 7mpbird 256 1 (Lim 𝐴 → ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wne 2943  c0 4256  Ord word 6265  Lim wlim 6267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-lim 6271
This theorem is referenced by:  limuni3  7699  peano1  7735  peano1OLD  7736  oe1m  8376  oalimcl  8391  oaass  8392  oarec  8393  omlimcl  8409  odi  8410  oen0  8417  oewordri  8423  oelim2  8426  oeoalem  8427  oeoelem  8429  limensuci  8940  rankxplim2  9638  rankxplim3  9639  r1limwun  10492
  Copyright terms: Public domain W3C validator