| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version | ||
| Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| 0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlim0 6424 | . . . 4 ⊢ ¬ Lim ∅ | |
| 2 | limeq 6377 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
| 4 | 3 | necon2ai 2960 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
| 5 | limord 6425 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 6 | ord0eln0 6420 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (Lim 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4315 Ord word 6364 Lim wlim 6366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-tr 5242 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-ord 6368 df-lim 6370 |
| This theorem is referenced by: limuni3 7856 peano1 7893 peano1OLD 7894 oe1m 8566 oalimcl 8581 oaass 8582 oarec 8583 omlimcl 8599 odi 8600 oen0 8607 oewordri 8613 oelim2 8616 oeoalem 8617 oeoelem 8619 limensuci 9176 rankxplim2 9903 rankxplim3 9904 r1limwun 10759 constr01 33724 omlimcl2 43199 oe0suclim 43235 |
| Copyright terms: Public domain | W3C validator |