Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version |
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 6324 | . . . 4 ⊢ ¬ Lim ∅ | |
2 | limeq 6278 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
4 | 3 | necon2ai 2973 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
5 | limord 6325 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
6 | ord0eln0 6320 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (Lim 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
8 | 4, 7 | mpbird 256 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 Ord word 6265 Lim wlim 6267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-lim 6271 |
This theorem is referenced by: limuni3 7699 peano1 7735 peano1OLD 7736 oe1m 8376 oalimcl 8391 oaass 8392 oarec 8393 omlimcl 8409 odi 8410 oen0 8417 oewordri 8423 oelim2 8426 oeoalem 8427 oeoelem 8429 limensuci 8940 rankxplim2 9638 rankxplim3 9639 r1limwun 10492 |
Copyright terms: Public domain | W3C validator |