MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ellim Structured version   Visualization version   GIF version

Theorem 0ellim 6428
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
0ellim (Lim 𝐴 → ∅ ∈ 𝐴)

Proof of Theorem 0ellim
StepHypRef Expression
1 nlim0 6424 . . . 4 ¬ Lim ∅
2 limeq 6377 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2960 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 limord 6425 . . 3 (Lim 𝐴 → Ord 𝐴)
6 ord0eln0 6420 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
75, 6syl 17 . 2 (Lim 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
84, 7mpbird 257 1 (Lim 𝐴 → ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wne 2931  c0 4315  Ord word 6364  Lim wlim 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-ord 6368  df-lim 6370
This theorem is referenced by:  limuni3  7856  peano1  7893  peano1OLD  7894  oe1m  8566  oalimcl  8581  oaass  8582  oarec  8583  omlimcl  8599  odi  8600  oen0  8607  oewordri  8613  oelim2  8616  oeoalem  8617  oeoelem  8619  limensuci  9176  rankxplim2  9903  rankxplim3  9904  r1limwun  10759  constr01  33724  omlimcl2  43199  oe0suclim  43235
  Copyright terms: Public domain W3C validator