MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ellim Structured version   Visualization version   GIF version

Theorem 0ellim 6375
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
0ellim (Lim 𝐴 → ∅ ∈ 𝐴)

Proof of Theorem 0ellim
StepHypRef Expression
1 dflim2 6369 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
21simp2bi 1146 1 (Lim 𝐴 → ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4286   cuni 4861  Ord word 6310  Lim wlim 6312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-lim 6316
This theorem is referenced by:  limuni3  7792  peano1  7829  oe1m  8470  oalimcl  8485  oaass  8486  oarec  8487  omlimcl  8503  odi  8504  oen0  8511  oewordri  8517  oelim2  8520  oeoalem  8521  oeoelem  8523  limensuci  9077  rankxplim2  9795  rankxplim3  9796  r1limwun  10649  constr01  33711  omlimcl2  43218  oe0suclim  43253
  Copyright terms: Public domain W3C validator