![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version |
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 6454 | . . . 4 ⊢ ¬ Lim ∅ | |
2 | limeq 6407 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
4 | 3 | necon2ai 2976 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
5 | limord 6455 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
6 | ord0eln0 6450 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (Lim 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
8 | 4, 7 | mpbird 257 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 Ord word 6394 Lim wlim 6396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-lim 6400 |
This theorem is referenced by: limuni3 7889 peano1 7927 peano1OLD 7928 oe1m 8601 oalimcl 8616 oaass 8617 oarec 8618 omlimcl 8634 odi 8635 oen0 8642 oewordri 8648 oelim2 8651 oeoalem 8652 oeoelem 8654 limensuci 9219 rankxplim2 9949 rankxplim3 9950 r1limwun 10805 constr01 33732 omlimcl2 43203 oe0suclim 43239 |
Copyright terms: Public domain | W3C validator |