MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ellim Structured version   Visualization version   GIF version

Theorem 0ellim 6458
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
0ellim (Lim 𝐴 → ∅ ∈ 𝐴)

Proof of Theorem 0ellim
StepHypRef Expression
1 nlim0 6454 . . . 4 ¬ Lim ∅
2 limeq 6407 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2976 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 limord 6455 . . 3 (Lim 𝐴 → Ord 𝐴)
6 ord0eln0 6450 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
75, 6syl 17 . 2 (Lim 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
84, 7mpbird 257 1 (Lim 𝐴 → ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  c0 4352  Ord word 6394  Lim wlim 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-lim 6400
This theorem is referenced by:  limuni3  7889  peano1  7927  peano1OLD  7928  oe1m  8601  oalimcl  8616  oaass  8617  oarec  8618  omlimcl  8634  odi  8635  oen0  8642  oewordri  8648  oelim2  8651  oeoalem  8652  oeoelem  8654  limensuci  9219  rankxplim2  9949  rankxplim3  9950  r1limwun  10805  constr01  33732  omlimcl2  43203  oe0suclim  43239
  Copyright terms: Public domain W3C validator