| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ellim | Structured version Visualization version GIF version | ||
| Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| 0ellim | ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlim0 6400 | . . . 4 ⊢ ¬ Lim ∅ | |
| 2 | limeq 6352 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
| 4 | 3 | necon2ai 2956 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
| 5 | limord 6401 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 6 | ord0eln0 6396 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (Lim 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∅c0 4304 Ord word 6339 Lim wlim 6341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-tr 5223 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-ord 6343 df-lim 6345 |
| This theorem is referenced by: limuni3 7836 peano1 7873 peano1OLD 7874 oe1m 8520 oalimcl 8535 oaass 8536 oarec 8537 omlimcl 8553 odi 8554 oen0 8561 oewordri 8567 oelim2 8570 oeoalem 8571 oeoelem 8573 limensuci 9130 rankxplim2 9851 rankxplim3 9852 r1limwun 10707 constr01 33740 omlimcl2 43203 oe0suclim 43238 |
| Copyright terms: Public domain | W3C validator |