| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankxplim2 | Structured version Visualization version GIF version | ||
| Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.) |
| Ref | Expression |
|---|---|
| rankxplim.1 | ⊢ 𝐴 ∈ V |
| rankxplim.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rankxplim2 | ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ellim 6370 | . . . 4 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → ∅ ∈ (rank‘(𝐴 × 𝐵))) | |
| 2 | n0i 4287 | . . . 4 ⊢ (∅ ∈ (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅) |
| 4 | df-ne 2929 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 × 𝐵) = ∅) | |
| 5 | rankxplim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 6 | rankxplim.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 7 | 5, 6 | xpex 7686 | . . . . . 6 ⊢ (𝐴 × 𝐵) ∈ V |
| 8 | 7 | rankeq0 9754 | . . . . 5 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅) |
| 9 | 8 | notbii 320 | . . . 4 ⊢ (¬ (𝐴 × 𝐵) = ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅) |
| 10 | 4, 9 | bitr2i 276 | . . 3 ⊢ (¬ (rank‘(𝐴 × 𝐵)) = ∅ ↔ (𝐴 × 𝐵) ≠ ∅) |
| 11 | 3, 10 | sylib 218 | . 2 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅) |
| 12 | limuni2 6369 | . . . 4 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim ∪ (rank‘(𝐴 × 𝐵))) | |
| 13 | limuni2 6369 | . . . 4 ⊢ (Lim ∪ (rank‘(𝐴 × 𝐵)) → Lim ∪ ∪ (rank‘(𝐴 × 𝐵))) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim ∪ ∪ (rank‘(𝐴 × 𝐵))) |
| 15 | rankuni 9756 | . . . . . 6 ⊢ (rank‘∪ ∪ (𝐴 × 𝐵)) = ∪ (rank‘∪ (𝐴 × 𝐵)) | |
| 16 | rankuni 9756 | . . . . . . 7 ⊢ (rank‘∪ (𝐴 × 𝐵)) = ∪ (rank‘(𝐴 × 𝐵)) | |
| 17 | 16 | unieqi 4868 | . . . . . 6 ⊢ ∪ (rank‘∪ (𝐴 × 𝐵)) = ∪ ∪ (rank‘(𝐴 × 𝐵)) |
| 18 | 15, 17 | eqtr2i 2755 | . . . . 5 ⊢ ∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘∪ ∪ (𝐴 × 𝐵)) |
| 19 | unixp 6229 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) | |
| 20 | 19 | fveq2d 6826 | . . . . 5 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (rank‘∪ ∪ (𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) |
| 21 | 18, 20 | eqtrid 2778 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) |
| 22 | limeq 6318 | . . . 4 ⊢ (∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵)) → (Lim ∪ ∪ (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 ∪ 𝐵)))) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (Lim ∪ ∪ (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 ∪ 𝐵)))) |
| 24 | 14, 23 | imbitrid 244 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵)))) |
| 25 | 11, 24 | mpcom 38 | 1 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∪ cun 3895 ∅c0 4280 ∪ cuni 4856 × cxp 5612 Lim wlim 6307 ‘cfv 6481 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: rankxpsuc 9775 |
| Copyright terms: Public domain | W3C validator |