| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankxplim2 | Structured version Visualization version GIF version | ||
| Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.) |
| Ref | Expression |
|---|---|
| rankxplim.1 | ⊢ 𝐴 ∈ V |
| rankxplim.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rankxplim2 | ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ellim 6384 | . . . 4 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → ∅ ∈ (rank‘(𝐴 × 𝐵))) | |
| 2 | n0i 4299 | . . . 4 ⊢ (∅ ∈ (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅) |
| 4 | df-ne 2926 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 × 𝐵) = ∅) | |
| 5 | rankxplim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 6 | rankxplim.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 7 | 5, 6 | xpex 7709 | . . . . . 6 ⊢ (𝐴 × 𝐵) ∈ V |
| 8 | 7 | rankeq0 9790 | . . . . 5 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅) |
| 9 | 8 | notbii 320 | . . . 4 ⊢ (¬ (𝐴 × 𝐵) = ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅) |
| 10 | 4, 9 | bitr2i 276 | . . 3 ⊢ (¬ (rank‘(𝐴 × 𝐵)) = ∅ ↔ (𝐴 × 𝐵) ≠ ∅) |
| 11 | 3, 10 | sylib 218 | . 2 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅) |
| 12 | limuni2 6383 | . . . 4 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim ∪ (rank‘(𝐴 × 𝐵))) | |
| 13 | limuni2 6383 | . . . 4 ⊢ (Lim ∪ (rank‘(𝐴 × 𝐵)) → Lim ∪ ∪ (rank‘(𝐴 × 𝐵))) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim ∪ ∪ (rank‘(𝐴 × 𝐵))) |
| 15 | rankuni 9792 | . . . . . 6 ⊢ (rank‘∪ ∪ (𝐴 × 𝐵)) = ∪ (rank‘∪ (𝐴 × 𝐵)) | |
| 16 | rankuni 9792 | . . . . . . 7 ⊢ (rank‘∪ (𝐴 × 𝐵)) = ∪ (rank‘(𝐴 × 𝐵)) | |
| 17 | 16 | unieqi 4879 | . . . . . 6 ⊢ ∪ (rank‘∪ (𝐴 × 𝐵)) = ∪ ∪ (rank‘(𝐴 × 𝐵)) |
| 18 | 15, 17 | eqtr2i 2753 | . . . . 5 ⊢ ∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘∪ ∪ (𝐴 × 𝐵)) |
| 19 | unixp 6243 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) | |
| 20 | 19 | fveq2d 6844 | . . . . 5 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (rank‘∪ ∪ (𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) |
| 21 | 18, 20 | eqtrid 2776 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) |
| 22 | limeq 6332 | . . . 4 ⊢ (∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵)) → (Lim ∪ ∪ (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 ∪ 𝐵)))) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (Lim ∪ ∪ (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 ∪ 𝐵)))) |
| 24 | 14, 23 | imbitrid 244 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵)))) |
| 25 | 11, 24 | mpcom 38 | 1 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∪ cun 3909 ∅c0 4292 ∪ cuni 4867 × cxp 5629 Lim wlim 6321 ‘cfv 6499 rankcrnk 9692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: rankxpsuc 9811 |
| Copyright terms: Public domain | W3C validator |