MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim2 Structured version   Visualization version   GIF version

Theorem rankxplim2 9773
Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐵 ∈ V
Assertion
Ref Expression
rankxplim2 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))

Proof of Theorem rankxplim2
StepHypRef Expression
1 0ellim 6370 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → ∅ ∈ (rank‘(𝐴 × 𝐵)))
2 n0i 4287 . . . 4 (∅ ∈ (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅)
31, 2syl 17 . . 3 (Lim (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅)
4 df-ne 2929 . . . 4 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 × 𝐵) = ∅)
5 rankxplim.1 . . . . . . 7 𝐴 ∈ V
6 rankxplim.2 . . . . . . 7 𝐵 ∈ V
75, 6xpex 7686 . . . . . 6 (𝐴 × 𝐵) ∈ V
87rankeq0 9754 . . . . 5 ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
98notbii 320 . . . 4 (¬ (𝐴 × 𝐵) = ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅)
104, 9bitr2i 276 . . 3 (¬ (rank‘(𝐴 × 𝐵)) = ∅ ↔ (𝐴 × 𝐵) ≠ ∅)
113, 10sylib 218 . 2 (Lim (rank‘(𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
12 limuni2 6369 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
13 limuni2 6369 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
1412, 13syl 17 . . 3 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
15 rankuni 9756 . . . . . 6 (rank‘ (𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
16 rankuni 9756 . . . . . . 7 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
1716unieqi 4868 . . . . . 6 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
1815, 17eqtr2i 2755 . . . . 5 (rank‘(𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
19 unixp 6229 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
2019fveq2d 6826 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
2118, 20eqtrid 2778 . . . 4 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
22 limeq 6318 . . . 4 ( (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)) → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴𝐵))))
2321, 22syl 17 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴𝐵))))
2414, 23imbitrid 244 . 2 ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵))))
2511, 24mpcom 38 1 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cun 3895  c0 4280   cuni 4856   × cxp 5612  Lim wlim 6307  cfv 6481  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  rankxpsuc  9775
  Copyright terms: Public domain W3C validator