MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim2 Structured version   Visualization version   GIF version

Theorem rankxplim2 9293
Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐵 ∈ V
Assertion
Ref Expression
rankxplim2 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))

Proof of Theorem rankxplim2
StepHypRef Expression
1 0ellim 6221 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → ∅ ∈ (rank‘(𝐴 × 𝐵)))
2 n0i 4249 . . . 4 (∅ ∈ (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅)
31, 2syl 17 . . 3 (Lim (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅)
4 df-ne 2988 . . . 4 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 × 𝐵) = ∅)
5 rankxplim.1 . . . . . . 7 𝐴 ∈ V
6 rankxplim.2 . . . . . . 7 𝐵 ∈ V
75, 6xpex 7456 . . . . . 6 (𝐴 × 𝐵) ∈ V
87rankeq0 9274 . . . . 5 ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
98notbii 323 . . . 4 (¬ (𝐴 × 𝐵) = ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅)
104, 9bitr2i 279 . . 3 (¬ (rank‘(𝐴 × 𝐵)) = ∅ ↔ (𝐴 × 𝐵) ≠ ∅)
113, 10sylib 221 . 2 (Lim (rank‘(𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
12 limuni2 6220 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
13 limuni2 6220 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
1412, 13syl 17 . . 3 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
15 rankuni 9276 . . . . . 6 (rank‘ (𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
16 rankuni 9276 . . . . . . 7 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
1716unieqi 4813 . . . . . 6 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
1815, 17eqtr2i 2822 . . . . 5 (rank‘(𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
19 unixp 6101 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
2019fveq2d 6649 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
2118, 20syl5eq 2845 . . . 4 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
22 limeq 6171 . . . 4 ( (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)) → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴𝐵))))
2321, 22syl 17 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴𝐵))))
2414, 23syl5ib 247 . 2 ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵))))
2511, 24mpcom 38 1 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cun 3879  c0 4243   cuni 4800   × cxp 5517  Lim wlim 6160  cfv 6324  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178
This theorem is referenced by:  rankxpsuc  9295
  Copyright terms: Public domain W3C validator