|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rankxplim2 | Structured version Visualization version GIF version | ||
| Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| rankxplim.1 | ⊢ 𝐴 ∈ V | 
| rankxplim.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| rankxplim2 | ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ellim 6447 | . . . 4 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → ∅ ∈ (rank‘(𝐴 × 𝐵))) | |
| 2 | n0i 4340 | . . . 4 ⊢ (∅ ∈ (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅) | 
| 4 | df-ne 2941 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 × 𝐵) = ∅) | |
| 5 | rankxplim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 6 | rankxplim.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 7 | 5, 6 | xpex 7773 | . . . . . 6 ⊢ (𝐴 × 𝐵) ∈ V | 
| 8 | 7 | rankeq0 9901 | . . . . 5 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅) | 
| 9 | 8 | notbii 320 | . . . 4 ⊢ (¬ (𝐴 × 𝐵) = ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅) | 
| 10 | 4, 9 | bitr2i 276 | . . 3 ⊢ (¬ (rank‘(𝐴 × 𝐵)) = ∅ ↔ (𝐴 × 𝐵) ≠ ∅) | 
| 11 | 3, 10 | sylib 218 | . 2 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅) | 
| 12 | limuni2 6446 | . . . 4 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim ∪ (rank‘(𝐴 × 𝐵))) | |
| 13 | limuni2 6446 | . . . 4 ⊢ (Lim ∪ (rank‘(𝐴 × 𝐵)) → Lim ∪ ∪ (rank‘(𝐴 × 𝐵))) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim ∪ ∪ (rank‘(𝐴 × 𝐵))) | 
| 15 | rankuni 9903 | . . . . . 6 ⊢ (rank‘∪ ∪ (𝐴 × 𝐵)) = ∪ (rank‘∪ (𝐴 × 𝐵)) | |
| 16 | rankuni 9903 | . . . . . . 7 ⊢ (rank‘∪ (𝐴 × 𝐵)) = ∪ (rank‘(𝐴 × 𝐵)) | |
| 17 | 16 | unieqi 4919 | . . . . . 6 ⊢ ∪ (rank‘∪ (𝐴 × 𝐵)) = ∪ ∪ (rank‘(𝐴 × 𝐵)) | 
| 18 | 15, 17 | eqtr2i 2766 | . . . . 5 ⊢ ∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘∪ ∪ (𝐴 × 𝐵)) | 
| 19 | unixp 6302 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) | |
| 20 | 19 | fveq2d 6910 | . . . . 5 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (rank‘∪ ∪ (𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) | 
| 21 | 18, 20 | eqtrid 2789 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) | 
| 22 | limeq 6396 | . . . 4 ⊢ (∪ ∪ (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵)) → (Lim ∪ ∪ (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 ∪ 𝐵)))) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (Lim ∪ ∪ (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴 ∪ 𝐵)))) | 
| 24 | 14, 23 | imbitrid 244 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵)))) | 
| 25 | 11, 24 | mpcom 38 | 1 ⊢ (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 ∪ 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∪ cun 3949 ∅c0 4333 ∪ cuni 4907 × cxp 5683 Lim wlim 6385 ‘cfv 6561 rankcrnk 9803 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 df-rank 9805 | 
| This theorem is referenced by: rankxpsuc 9922 | 
| Copyright terms: Public domain | W3C validator |