MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim2 Structured version   Visualization version   GIF version

Theorem rankxplim2 9776
Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐵 ∈ V
Assertion
Ref Expression
rankxplim2 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))

Proof of Theorem rankxplim2
StepHypRef Expression
1 0ellim 6371 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → ∅ ∈ (rank‘(𝐴 × 𝐵)))
2 n0i 4291 . . . 4 (∅ ∈ (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅)
31, 2syl 17 . . 3 (Lim (rank‘(𝐴 × 𝐵)) → ¬ (rank‘(𝐴 × 𝐵)) = ∅)
4 df-ne 2926 . . . 4 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 × 𝐵) = ∅)
5 rankxplim.1 . . . . . . 7 𝐴 ∈ V
6 rankxplim.2 . . . . . . 7 𝐵 ∈ V
75, 6xpex 7689 . . . . . 6 (𝐴 × 𝐵) ∈ V
87rankeq0 9757 . . . . 5 ((𝐴 × 𝐵) = ∅ ↔ (rank‘(𝐴 × 𝐵)) = ∅)
98notbii 320 . . . 4 (¬ (𝐴 × 𝐵) = ∅ ↔ ¬ (rank‘(𝐴 × 𝐵)) = ∅)
104, 9bitr2i 276 . . 3 (¬ (rank‘(𝐴 × 𝐵)) = ∅ ↔ (𝐴 × 𝐵) ≠ ∅)
113, 10sylib 218 . 2 (Lim (rank‘(𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
12 limuni2 6370 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
13 limuni2 6370 . . . 4 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
1412, 13syl 17 . . 3 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴 × 𝐵)))
15 rankuni 9759 . . . . . 6 (rank‘ (𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
16 rankuni 9759 . . . . . . 7 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
1716unieqi 4870 . . . . . 6 (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴 × 𝐵))
1815, 17eqtr2i 2753 . . . . 5 (rank‘(𝐴 × 𝐵)) = (rank‘ (𝐴 × 𝐵))
19 unixp 6230 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
2019fveq2d 6826 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
2118, 20eqtrid 2776 . . . 4 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
22 limeq 6319 . . . 4 ( (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)) → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴𝐵))))
2321, 22syl 17 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) ↔ Lim (rank‘(𝐴𝐵))))
2414, 23imbitrid 244 . 2 ((𝐴 × 𝐵) ≠ ∅ → (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵))))
2511, 24mpcom 38 1 (Lim (rank‘(𝐴 × 𝐵)) → Lim (rank‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cun 3901  c0 4284   cuni 4858   × cxp 5617  Lim wlim 6308  cfv 6482  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by:  rankxpsuc  9778
  Copyright terms: Public domain W3C validator