MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpirring Structured version   Visualization version   GIF version

Theorem lpirring 21297
Description: Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lpirring (𝑅 ∈ LPIR → 𝑅 ∈ Ring)

Proof of Theorem lpirring
StepHypRef Expression
1 eqid 2736 . . 3 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
2 eqid 2736 . . 3 (LIdeal‘𝑅) = (LIdeal‘𝑅)
31, 2islpir 21294 . 2 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
43simplbi 497 1 (𝑅 ∈ LPIR → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  Ringcrg 20198  LIdealclidl 21172  LPIdealclpidl 21286  LPIRclpir 21287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-lpir 21289
This theorem is referenced by:  lpirlnr  43108
  Copyright terms: Public domain W3C validator