Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpirlnr Structured version   Visualization version   GIF version

Theorem lpirlnr 43106
Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lpirlnr (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR)

Proof of Theorem lpirlnr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpirring 21359 . 2 (𝑅 ∈ LPIR → 𝑅 ∈ Ring)
2 eqid 2735 . . . . . . . 8 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
3 eqid 2735 . . . . . . . 8 (RSpan‘𝑅) = (RSpan‘𝑅)
4 eqid 2735 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
52, 3, 4islpidl 21353 . . . . . . 7 (𝑅 ∈ Ring → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐})))
61, 5syl 17 . . . . . 6 (𝑅 ∈ LPIR → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐})))
76biimpa 476 . . . . 5 ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))
8 snelpwi 5454 . . . . . . . . . 10 (𝑐 ∈ (Base‘𝑅) → {𝑐} ∈ 𝒫 (Base‘𝑅))
98adantl 481 . . . . . . . . 9 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ 𝒫 (Base‘𝑅))
10 snfi 9082 . . . . . . . . . 10 {𝑐} ∈ Fin
1110a1i 11 . . . . . . . . 9 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ Fin)
129, 11elind 4210 . . . . . . . 8 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin))
13 eqid 2735 . . . . . . . 8 ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐})
14 fveq2 6907 . . . . . . . . 9 (𝑏 = {𝑐} → ((RSpan‘𝑅)‘𝑏) = ((RSpan‘𝑅)‘{𝑐}))
1514rspceeqv 3645 . . . . . . . 8 (({𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐})) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))
1612, 13, 15sylancl 586 . . . . . . 7 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))
17 eqeq1 2739 . . . . . . . 8 (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)))
1817rexbidv 3177 . . . . . . 7 (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)))
1916, 18syl5ibrcom 247 . . . . . 6 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)))
2019rexlimdva 3153 . . . . 5 ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → (∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)))
217, 20mpd 15 . . . 4 ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))
2221ralrimiva 3144 . . 3 (𝑅 ∈ LPIR → ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))
23 eqid 2735 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
242, 23islpir 21356 . . . 4 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
2524simprbi 496 . . 3 (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
2622, 25raleqtrrdv 3328 . 2 (𝑅 ∈ LPIR → ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))
274, 23, 3islnr2 43103 . 2 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)))
281, 26, 27sylanbrc 583 1 (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cin 3962  𝒫 cpw 4605  {csn 4631  cfv 6563  Fincfn 8984  Basecbs 17245  Ringcrg 20251  LIdealclidl 21234  RSpancrsp 21235  LPIdealclpidl 21348  LPIRclpir 21349  LNoeRclnr 43098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-mgp 20153  df-ur 20200  df-ring 20253  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-lpidl 21350  df-lpir 21351  df-lfig 43057  df-lnm 43065  df-lnr 43099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator