Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlnr | Structured version Visualization version GIF version |
Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
lpirlnr | ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpirring 20093 | . 2 ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ Ring) | |
2 | eqid 2758 | . . . . . . . 8 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
3 | eqid 2758 | . . . . . . . 8 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
4 | eqid 2758 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 2, 3, 4 | islpidl 20087 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))) |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ LPIR → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))) |
7 | 6 | biimpa 480 | . . . . 5 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐})) |
8 | snelpwi 5305 | . . . . . . . . . 10 ⊢ (𝑐 ∈ (Base‘𝑅) → {𝑐} ∈ 𝒫 (Base‘𝑅)) | |
9 | 8 | adantl 485 | . . . . . . . . 9 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ 𝒫 (Base‘𝑅)) |
10 | snfi 8614 | . . . . . . . . . 10 ⊢ {𝑐} ∈ Fin | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ Fin) |
12 | 9, 11 | elind 4099 | . . . . . . . 8 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin)) |
13 | eqid 2758 | . . . . . . . 8 ⊢ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐}) | |
14 | fveq2 6658 | . . . . . . . . 9 ⊢ (𝑏 = {𝑐} → ((RSpan‘𝑅)‘𝑏) = ((RSpan‘𝑅)‘{𝑐})) | |
15 | 14 | rspceeqv 3556 | . . . . . . . 8 ⊢ (({𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐})) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)) |
16 | 12, 13, 15 | sylancl 589 | . . . . . . 7 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)) |
17 | eqeq1 2762 | . . . . . . . 8 ⊢ (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))) | |
18 | 17 | rexbidv 3221 | . . . . . . 7 ⊢ (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))) |
19 | 16, 18 | syl5ibrcom 250 | . . . . . 6 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
20 | 19 | rexlimdva 3208 | . . . . 5 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → (∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
21 | 7, 20 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
22 | 21 | ralrimiva 3113 | . . 3 ⊢ (𝑅 ∈ LPIR → ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
23 | eqid 2758 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
24 | 2, 23 | islpir 20090 | . . . . 5 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
25 | 24 | simprbi 500 | . . . 4 ⊢ (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
26 | 25 | raleqdv 3329 | . . 3 ⊢ (𝑅 ∈ LPIR → (∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
27 | 22, 26 | mpbird 260 | . 2 ⊢ (𝑅 ∈ LPIR → ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
28 | 4, 23, 3 | islnr2 40431 | . 2 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
29 | 1, 27, 28 | sylanbrc 586 | 1 ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ∩ cin 3857 𝒫 cpw 4494 {csn 4522 ‘cfv 6335 Fincfn 8527 Basecbs 16541 Ringcrg 19365 LIdealclidl 20010 RSpancrsp 20011 LPIdealclpidl 20082 LPIRclpir 20083 LNoeRclnr 40426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-mgp 19308 df-ur 19320 df-ring 19367 df-subrg 19601 df-lmod 19704 df-lss 19772 df-lsp 19812 df-sra 20012 df-rgmod 20013 df-lidl 20014 df-rsp 20015 df-lpidl 20084 df-lpir 20085 df-lfig 40385 df-lnm 40393 df-lnr 40427 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |