![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlnr | Structured version Visualization version GIF version |
Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
lpirlnr | ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpirring 21364 | . 2 ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ Ring) | |
2 | eqid 2740 | . . . . . . . 8 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
3 | eqid 2740 | . . . . . . . 8 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
4 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 2, 3, 4 | islpidl 21358 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))) |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ LPIR → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))) |
7 | 6 | biimpa 476 | . . . . 5 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐})) |
8 | snelpwi 5463 | . . . . . . . . . 10 ⊢ (𝑐 ∈ (Base‘𝑅) → {𝑐} ∈ 𝒫 (Base‘𝑅)) | |
9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ 𝒫 (Base‘𝑅)) |
10 | snfi 9109 | . . . . . . . . . 10 ⊢ {𝑐} ∈ Fin | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ Fin) |
12 | 9, 11 | elind 4223 | . . . . . . . 8 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin)) |
13 | eqid 2740 | . . . . . . . 8 ⊢ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐}) | |
14 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑏 = {𝑐} → ((RSpan‘𝑅)‘𝑏) = ((RSpan‘𝑅)‘{𝑐})) | |
15 | 14 | rspceeqv 3658 | . . . . . . . 8 ⊢ (({𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐})) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)) |
16 | 12, 13, 15 | sylancl 585 | . . . . . . 7 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)) |
17 | eqeq1 2744 | . . . . . . . 8 ⊢ (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))) | |
18 | 17 | rexbidv 3185 | . . . . . . 7 ⊢ (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))) |
19 | 16, 18 | syl5ibrcom 247 | . . . . . 6 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
20 | 19 | rexlimdva 3161 | . . . . 5 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → (∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
21 | 7, 20 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
22 | 21 | ralrimiva 3152 | . . 3 ⊢ (𝑅 ∈ LPIR → ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
23 | eqid 2740 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
24 | 2, 23 | islpir 21361 | . . . 4 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
25 | 24 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
26 | 22, 25 | raleqtrrdv 3338 | . 2 ⊢ (𝑅 ∈ LPIR → ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
27 | 4, 23, 3 | islnr2 43071 | . 2 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
28 | 1, 26, 27 | sylanbrc 582 | 1 ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 Fincfn 9003 Basecbs 17258 Ringcrg 20260 LIdealclidl 21239 RSpancrsp 21240 LPIdealclpidl 21353 LPIRclpir 21354 LNoeRclnr 43066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-mgp 20162 df-ur 20209 df-ring 20262 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-lpidl 21355 df-lpir 21356 df-lfig 43025 df-lnm 43033 df-lnr 43067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |