Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpirlnr Structured version   Visualization version   GIF version

Theorem lpirlnr 40434
Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lpirlnr (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR)

Proof of Theorem lpirlnr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpirring 20093 . 2 (𝑅 ∈ LPIR → 𝑅 ∈ Ring)
2 eqid 2758 . . . . . . . 8 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
3 eqid 2758 . . . . . . . 8 (RSpan‘𝑅) = (RSpan‘𝑅)
4 eqid 2758 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
52, 3, 4islpidl 20087 . . . . . . 7 (𝑅 ∈ Ring → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐})))
61, 5syl 17 . . . . . 6 (𝑅 ∈ LPIR → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐})))
76biimpa 480 . . . . 5 ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))
8 snelpwi 5305 . . . . . . . . . 10 (𝑐 ∈ (Base‘𝑅) → {𝑐} ∈ 𝒫 (Base‘𝑅))
98adantl 485 . . . . . . . . 9 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ 𝒫 (Base‘𝑅))
10 snfi 8614 . . . . . . . . . 10 {𝑐} ∈ Fin
1110a1i 11 . . . . . . . . 9 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ Fin)
129, 11elind 4099 . . . . . . . 8 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin))
13 eqid 2758 . . . . . . . 8 ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐})
14 fveq2 6658 . . . . . . . . 9 (𝑏 = {𝑐} → ((RSpan‘𝑅)‘𝑏) = ((RSpan‘𝑅)‘{𝑐}))
1514rspceeqv 3556 . . . . . . . 8 (({𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐})) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))
1612, 13, 15sylancl 589 . . . . . . 7 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))
17 eqeq1 2762 . . . . . . . 8 (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)))
1817rexbidv 3221 . . . . . . 7 (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)))
1916, 18syl5ibrcom 250 . . . . . 6 (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)))
2019rexlimdva 3208 . . . . 5 ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → (∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)))
217, 20mpd 15 . . . 4 ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))
2221ralrimiva 3113 . . 3 (𝑅 ∈ LPIR → ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))
23 eqid 2758 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
242, 23islpir 20090 . . . . 5 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
2524simprbi 500 . . . 4 (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅))
2625raleqdv 3329 . . 3 (𝑅 ∈ LPIR → (∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)))
2722, 26mpbird 260 . 2 (𝑅 ∈ LPIR → ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))
284, 23, 3islnr2 40431 . 2 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)))
291, 27, 28sylanbrc 586 1 (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  cin 3857  𝒫 cpw 4494  {csn 4522  cfv 6335  Fincfn 8527  Basecbs 16541  Ringcrg 19365  LIdealclidl 20010  RSpancrsp 20011  LPIdealclpidl 20082  LPIRclpir 20083  LNoeRclnr 40426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-sca 16639  df-vsca 16640  df-ip 16641  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-subg 18343  df-mgp 19308  df-ur 19320  df-ring 19367  df-subrg 19601  df-lmod 19704  df-lss 19772  df-lsp 19812  df-sra 20012  df-rgmod 20013  df-lidl 20014  df-rsp 20015  df-lpidl 20084  df-lpir 20085  df-lfig 40385  df-lnm 40393  df-lnr 40427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator