![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpir | Structured version Visualization version GIF version |
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpiss.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
islpir | ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . 4 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
2 | fveq2 6907 | . . . 4 ⊢ (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅)) | |
3 | 1, 2 | eqeq12d 2751 | . . 3 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
4 | lpiss.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
5 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
6 | 4, 5 | eqeq12i 2753 | . . 3 ⊢ (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
7 | 3, 6 | bitr4di 289 | . 2 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃)) |
8 | df-lpir 21351 | . 2 ⊢ LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)} | |
9 | 7, 8 | elrab2 3698 | 1 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Ringcrg 20251 LIdealclidl 21234 LPIdealclpidl 21348 LPIRclpir 21349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-lpir 21351 |
This theorem is referenced by: islpir2 21358 lpirring 21359 lpirlidllpi 33382 mxidlirred 33480 lpirlnr 43106 |
Copyright terms: Public domain | W3C validator |