![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpir | Structured version Visualization version GIF version |
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | β’ π = (LPIdealβπ ) |
lpiss.u | β’ π = (LIdealβπ ) |
Ref | Expression |
---|---|
islpir | β’ (π β LPIR β (π β Ring β§ π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6882 | . . . 4 β’ (π = π β (LIdealβπ) = (LIdealβπ )) | |
2 | fveq2 6882 | . . . 4 β’ (π = π β (LPIdealβπ) = (LPIdealβπ )) | |
3 | 1, 2 | eqeq12d 2740 | . . 3 β’ (π = π β ((LIdealβπ) = (LPIdealβπ) β (LIdealβπ ) = (LPIdealβπ ))) |
4 | lpiss.u | . . . 4 β’ π = (LIdealβπ ) | |
5 | lpival.p | . . . 4 β’ π = (LPIdealβπ ) | |
6 | 4, 5 | eqeq12i 2742 | . . 3 β’ (π = π β (LIdealβπ ) = (LPIdealβπ )) |
7 | 3, 6 | bitr4di 289 | . 2 β’ (π = π β ((LIdealβπ) = (LPIdealβπ) β π = π)) |
8 | df-lpir 21172 | . 2 β’ LPIR = {π β Ring β£ (LIdealβπ) = (LPIdealβπ)} | |
9 | 7, 8 | elrab2 3679 | 1 β’ (π β LPIR β (π β Ring β§ π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6534 Ringcrg 20134 LIdealclidl 21061 LPIdealclpidl 21169 LPIRclpir 21170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-lpir 21172 |
This theorem is referenced by: islpir2 21179 lpirring 21180 mxidlirred 33084 lpirlnr 42411 |
Copyright terms: Public domain | W3C validator |