MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpir Structured version   Visualization version   GIF version

Theorem islpir 20886
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdealβ€˜π‘…)
lpiss.u π‘ˆ = (LIdealβ€˜π‘…)
Assertion
Ref Expression
islpir (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ π‘ˆ = 𝑃))

Proof of Theorem islpir
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . 4 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜π‘Ÿ) = (LIdealβ€˜π‘…))
2 fveq2 6891 . . . 4 (π‘Ÿ = 𝑅 β†’ (LPIdealβ€˜π‘Ÿ) = (LPIdealβ€˜π‘…))
31, 2eqeq12d 2748 . . 3 (π‘Ÿ = 𝑅 β†’ ((LIdealβ€˜π‘Ÿ) = (LPIdealβ€˜π‘Ÿ) ↔ (LIdealβ€˜π‘…) = (LPIdealβ€˜π‘…)))
4 lpiss.u . . . 4 π‘ˆ = (LIdealβ€˜π‘…)
5 lpival.p . . . 4 𝑃 = (LPIdealβ€˜π‘…)
64, 5eqeq12i 2750 . . 3 (π‘ˆ = 𝑃 ↔ (LIdealβ€˜π‘…) = (LPIdealβ€˜π‘…))
73, 6bitr4di 288 . 2 (π‘Ÿ = 𝑅 β†’ ((LIdealβ€˜π‘Ÿ) = (LPIdealβ€˜π‘Ÿ) ↔ π‘ˆ = 𝑃))
8 df-lpir 20881 . 2 LPIR = {π‘Ÿ ∈ Ring ∣ (LIdealβ€˜π‘Ÿ) = (LPIdealβ€˜π‘Ÿ)}
97, 8elrab2 3686 1 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ π‘ˆ = 𝑃))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  Ringcrg 20055  LIdealclidl 20782  LPIdealclpidl 20878  LPIRclpir 20879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-lpir 20881
This theorem is referenced by:  islpir2  20888  lpirring  20889  mxidlirred  32583  lpirlnr  41849
  Copyright terms: Public domain W3C validator