![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpir | Structured version Visualization version GIF version |
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpiss.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
islpir | ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6433 | . . . 4 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
2 | fveq2 6433 | . . . 4 ⊢ (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅)) | |
3 | 1, 2 | eqeq12d 2840 | . . 3 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
4 | lpiss.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
5 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
6 | 4, 5 | eqeq12i 2839 | . . 3 ⊢ (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
7 | 3, 6 | syl6bbr 281 | . 2 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃)) |
8 | df-lpir 19605 | . 2 ⊢ LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)} | |
9 | 7, 8 | elrab2 3589 | 1 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 Ringcrg 18901 LIdealclidl 19531 LPIdealclpidl 19602 LPIRclpir 19603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-lpir 19605 |
This theorem is referenced by: islpir2 19612 lpirring 19613 lpirlnr 38530 |
Copyright terms: Public domain | W3C validator |