MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpir Structured version   Visualization version   GIF version

Theorem islpir 21238
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpiss.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
islpir (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃))

Proof of Theorem islpir
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
2 fveq2 6858 . . . 4 (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅))
31, 2eqeq12d 2745 . . 3 (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
4 lpiss.u . . . 4 𝑈 = (LIdeal‘𝑅)
5 lpival.p . . . 4 𝑃 = (LPIdeal‘𝑅)
64, 5eqeq12i 2747 . . 3 (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))
73, 6bitr4di 289 . 2 (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃))
8 df-lpir 21233 . 2 LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)}
97, 8elrab2 3662 1 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  Ringcrg 20142  LIdealclidl 21116  LPIdealclpidl 21230  LPIRclpir 21231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-lpir 21233
This theorem is referenced by:  islpir2  21240  lpirring  21241  lpirlidllpi  33345  mxidlirred  33443  lpirlnr  43106
  Copyright terms: Public domain W3C validator