MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpir Structured version   Visualization version   GIF version

Theorem islpir 21361
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpiss.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
islpir (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃))

Proof of Theorem islpir
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
2 fveq2 6920 . . . 4 (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅))
31, 2eqeq12d 2756 . . 3 (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
4 lpiss.u . . . 4 𝑈 = (LIdeal‘𝑅)
5 lpival.p . . . 4 𝑃 = (LPIdeal‘𝑅)
64, 5eqeq12i 2758 . . 3 (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))
73, 6bitr4di 289 . 2 (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃))
8 df-lpir 21356 . 2 LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)}
97, 8elrab2 3711 1 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  Ringcrg 20260  LIdealclidl 21239  LPIdealclpidl 21353  LPIRclpir 21354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-lpir 21356
This theorem is referenced by:  islpir2  21363  lpirring  21364  lpirlidllpi  33367  mxidlirred  33465  lpirlnr  43074
  Copyright terms: Public domain W3C validator