MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpir Structured version   Visualization version   GIF version

Theorem islpir 20433
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpiss.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
islpir (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃))

Proof of Theorem islpir
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
2 fveq2 6756 . . . 4 (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅))
31, 2eqeq12d 2754 . . 3 (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)))
4 lpiss.u . . . 4 𝑈 = (LIdeal‘𝑅)
5 lpival.p . . . 4 𝑃 = (LPIdeal‘𝑅)
64, 5eqeq12i 2756 . . 3 (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))
73, 6bitr4di 288 . 2 (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃))
8 df-lpir 20428 . 2 LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)}
97, 8elrab2 3620 1 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  Ringcrg 19698  LIdealclidl 20347  LPIdealclpidl 20425  LPIRclpir 20426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-lpir 20428
This theorem is referenced by:  islpir2  20435  lpirring  20436  lpirlnr  40858
  Copyright terms: Public domain W3C validator