| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islpir | Structured version Visualization version GIF version | ||
| Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
| lpiss.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| islpir | ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . 4 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
| 2 | fveq2 6881 | . . . 4 ⊢ (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅)) | |
| 3 | 1, 2 | eqeq12d 2752 | . . 3 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
| 4 | lpiss.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 5 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
| 6 | 4, 5 | eqeq12i 2754 | . . 3 ⊢ (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
| 7 | 3, 6 | bitr4di 289 | . 2 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃)) |
| 8 | df-lpir 21289 | . 2 ⊢ LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)} | |
| 9 | 7, 8 | elrab2 3679 | 1 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 Ringcrg 20198 LIdealclidl 21172 LPIdealclpidl 21286 LPIRclpir 21287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-lpir 21289 |
| This theorem is referenced by: islpir2 21296 lpirring 21297 lpirlidllpi 33394 mxidlirred 33492 lpirlnr 43108 |
| Copyright terms: Public domain | W3C validator |