![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpir | Structured version Visualization version GIF version |
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | β’ π = (LPIdealβπ ) |
lpiss.u | β’ π = (LIdealβπ ) |
Ref | Expression |
---|---|
islpir | β’ (π β LPIR β (π β Ring β§ π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 β’ (π = π β (LIdealβπ) = (LIdealβπ )) | |
2 | fveq2 6891 | . . . 4 β’ (π = π β (LPIdealβπ) = (LPIdealβπ )) | |
3 | 1, 2 | eqeq12d 2748 | . . 3 β’ (π = π β ((LIdealβπ) = (LPIdealβπ) β (LIdealβπ ) = (LPIdealβπ ))) |
4 | lpiss.u | . . . 4 β’ π = (LIdealβπ ) | |
5 | lpival.p | . . . 4 β’ π = (LPIdealβπ ) | |
6 | 4, 5 | eqeq12i 2750 | . . 3 β’ (π = π β (LIdealβπ ) = (LPIdealβπ )) |
7 | 3, 6 | bitr4di 288 | . 2 β’ (π = π β ((LIdealβπ) = (LPIdealβπ) β π = π)) |
8 | df-lpir 20881 | . 2 β’ LPIR = {π β Ring β£ (LIdealβπ) = (LPIdealβπ)} | |
9 | 7, 8 | elrab2 3686 | 1 β’ (π β LPIR β (π β Ring β§ π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 Ringcrg 20055 LIdealclidl 20782 LPIdealclpidl 20878 LPIRclpir 20879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-lpir 20881 |
This theorem is referenced by: islpir2 20888 lpirring 20889 mxidlirred 32583 lpirlnr 41849 |
Copyright terms: Public domain | W3C validator |