Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islpir | Structured version Visualization version GIF version |
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpiss.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
islpir | ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
2 | fveq2 6756 | . . . 4 ⊢ (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅)) | |
3 | 1, 2 | eqeq12d 2754 | . . 3 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
4 | lpiss.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
5 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
6 | 4, 5 | eqeq12i 2756 | . . 3 ⊢ (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
7 | 3, 6 | bitr4di 288 | . 2 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃)) |
8 | df-lpir 20428 | . 2 ⊢ LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)} | |
9 | 7, 8 | elrab2 3620 | 1 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Ringcrg 19698 LIdealclidl 20347 LPIdealclpidl 20425 LPIRclpir 20426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-lpir 20428 |
This theorem is referenced by: islpir2 20435 lpirring 20436 lpirlnr 40858 |
Copyright terms: Public domain | W3C validator |