| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltordlem | Structured version Visualization version GIF version | ||
| Description: Lemma for ltord1 11789. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| ltord.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| ltord.2 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
| ltord.3 | ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
| ltord.4 | ⊢ 𝑆 ⊆ ℝ |
| ltord.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| ltord.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) |
| Ref | Expression |
|---|---|
| ltordlem | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.6 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) | |
| 2 | 1 | ralrimivva 3202 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 < 𝑦 → 𝐴 < 𝐵)) |
| 3 | breq1 5146 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝑦 ↔ 𝐶 < 𝑦)) | |
| 4 | ltord.2 | . . . . 5 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) | |
| 5 | 4 | breq1d 5153 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝐵 ↔ 𝑀 < 𝐵)) |
| 6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥 < 𝑦 → 𝐴 < 𝐵) ↔ (𝐶 < 𝑦 → 𝑀 < 𝐵))) |
| 7 | breq2 5147 | . . . 4 ⊢ (𝑦 = 𝐷 → (𝐶 < 𝑦 ↔ 𝐶 < 𝐷)) | |
| 8 | eqeq1 2741 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐷 ↔ 𝑦 = 𝐷)) | |
| 9 | ltord.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 10 | 9 | eqeq1d 2739 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 = 𝑁 ↔ 𝐵 = 𝑁)) |
| 11 | 8, 10 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐷 → 𝐴 = 𝑁) ↔ (𝑦 = 𝐷 → 𝐵 = 𝑁))) |
| 12 | ltord.3 | . . . . . 6 ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) | |
| 13 | 11, 12 | chvarvv 1998 | . . . . 5 ⊢ (𝑦 = 𝐷 → 𝐵 = 𝑁) |
| 14 | 13 | breq2d 5155 | . . . 4 ⊢ (𝑦 = 𝐷 → (𝑀 < 𝐵 ↔ 𝑀 < 𝑁)) |
| 15 | 7, 14 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶 < 𝑦 → 𝑀 < 𝐵) ↔ (𝐶 < 𝐷 → 𝑀 < 𝑁))) |
| 16 | 6, 15 | rspc2v 3633 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 < 𝑦 → 𝐴 < 𝐵) → (𝐶 < 𝐷 → 𝑀 < 𝑁))) |
| 17 | 2, 16 | mpan9 506 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 class class class wbr 5143 ℝcr 11154 < clt 11295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 |
| This theorem is referenced by: ltord1 11789 |
| Copyright terms: Public domain | W3C validator |