MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltord1 Structured version   Visualization version   GIF version

Theorem ltord1 11602
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
ltord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem ltord1
StepHypRef Expression
1 ltord.1 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
2 ltord.2 . . 3 (𝑥 = 𝐶𝐴 = 𝑀)
3 ltord.3 . . 3 (𝑥 = 𝐷𝐴 = 𝑁)
4 ltord.4 . . 3 𝑆 ⊆ ℝ
5 ltord.5 . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
6 ltord.6 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
71, 2, 3, 4, 5, 6ltordlem 11601 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
8 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥 = 𝐷𝐶 = 𝐷))
92eqeq1d 2738 . . . . . . . 8 (𝑥 = 𝐶 → (𝐴 = 𝑁𝑀 = 𝑁))
108, 9imbi12d 344 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥 = 𝐷𝐴 = 𝑁) ↔ (𝐶 = 𝐷𝑀 = 𝑁)))
1110, 3vtoclg 3514 . . . . . 6 (𝐶𝑆 → (𝐶 = 𝐷𝑀 = 𝑁))
1211ad2antrl 725 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
131, 3, 2, 4, 5, 6ltordlem 11601 . . . . . 6 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1413ancom2s 647 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1512, 14orim12d 962 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → ((𝐶 = 𝐷𝐷 < 𝐶) → (𝑀 = 𝑁𝑁 < 𝑀)))
1615con3d 152 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ (𝑀 = 𝑁𝑁 < 𝑀) → ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
175ralrimiva 3139 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
182eleq1d 2821 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
1918rspccva 3569 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2017, 19sylan 580 . . . . 5 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
213eleq1d 2821 . . . . . . 7 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3569 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2317, 22sylan 580 . . . . 5 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2420, 23anim12dan 619 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
25 axlttri 11147 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
2624, 25syl 17 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
274sseli 3928 . . . . 5 (𝐶𝑆𝐶 ∈ ℝ)
284sseli 3928 . . . . 5 (𝐷𝑆𝐷 ∈ ℝ)
29 axlttri 11147 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3027, 28, 29syl2an 596 . . . 4 ((𝐶𝑆𝐷𝑆) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3130adantl 482 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3216, 26, 313imtr4d 293 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁𝐶 < 𝐷))
337, 32impbid 211 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wral 3061  wss 3898   class class class wbr 5092  cr 10971   < clt 11110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-resscn 11029  ax-pre-lttri 11046
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-ltxr 11115
This theorem is referenced by:  leord1  11603  ltord2  11605  rpexpmord  13987  ltexp2  13989  eflt  15925  tanord1  25799  tanord  25800  monotuz  41034  monotoddzzfi  41035
  Copyright terms: Public domain W3C validator