MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltord1 Structured version   Visualization version   GIF version

Theorem ltord1 11787
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
ltord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem ltord1
StepHypRef Expression
1 ltord.1 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
2 ltord.2 . . 3 (𝑥 = 𝐶𝐴 = 𝑀)
3 ltord.3 . . 3 (𝑥 = 𝐷𝐴 = 𝑁)
4 ltord.4 . . 3 𝑆 ⊆ ℝ
5 ltord.5 . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
6 ltord.6 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
71, 2, 3, 4, 5, 6ltordlem 11786 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
8 eqeq1 2739 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥 = 𝐷𝐶 = 𝐷))
92eqeq1d 2737 . . . . . . . 8 (𝑥 = 𝐶 → (𝐴 = 𝑁𝑀 = 𝑁))
108, 9imbi12d 344 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥 = 𝐷𝐴 = 𝑁) ↔ (𝐶 = 𝐷𝑀 = 𝑁)))
1110, 3vtoclg 3554 . . . . . 6 (𝐶𝑆 → (𝐶 = 𝐷𝑀 = 𝑁))
1211ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
131, 3, 2, 4, 5, 6ltordlem 11786 . . . . . 6 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1413ancom2s 650 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1512, 14orim12d 966 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → ((𝐶 = 𝐷𝐷 < 𝐶) → (𝑀 = 𝑁𝑁 < 𝑀)))
1615con3d 152 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ (𝑀 = 𝑁𝑁 < 𝑀) → ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
175ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
182eleq1d 2824 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
1918rspccva 3621 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2017, 19sylan 580 . . . . 5 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
213eleq1d 2824 . . . . . . 7 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3621 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2317, 22sylan 580 . . . . 5 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2420, 23anim12dan 619 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
25 axlttri 11330 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
2624, 25syl 17 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
274sseli 3991 . . . . 5 (𝐶𝑆𝐶 ∈ ℝ)
284sseli 3991 . . . . 5 (𝐷𝑆𝐷 ∈ ℝ)
29 axlttri 11330 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3027, 28, 29syl2an 596 . . . 4 ((𝐶𝑆𝐷𝑆) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3130adantl 481 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3216, 26, 313imtr4d 294 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁𝐶 < 𝐷))
337, 32impbid 212 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  wss 3963   class class class wbr 5148  cr 11152   < clt 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-pre-lttri 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298
This theorem is referenced by:  leord1  11788  ltord2  11790  rpexpmord  14205  ltexp2  14207  eflt  16150  tanord1  26594  tanord  26595  monotuz  42930  monotoddzzfi  42931
  Copyright terms: Public domain W3C validator