MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltord1 Structured version   Visualization version   GIF version

Theorem ltord1 11740
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
ltord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem ltord1
StepHypRef Expression
1 ltord.1 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
2 ltord.2 . . 3 (𝑥 = 𝐶𝐴 = 𝑀)
3 ltord.3 . . 3 (𝑥 = 𝐷𝐴 = 𝑁)
4 ltord.4 . . 3 𝑆 ⊆ ℝ
5 ltord.5 . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
6 ltord.6 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
71, 2, 3, 4, 5, 6ltordlem 11739 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
8 eqeq1 2737 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥 = 𝐷𝐶 = 𝐷))
92eqeq1d 2735 . . . . . . . 8 (𝑥 = 𝐶 → (𝐴 = 𝑁𝑀 = 𝑁))
108, 9imbi12d 345 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥 = 𝐷𝐴 = 𝑁) ↔ (𝐶 = 𝐷𝑀 = 𝑁)))
1110, 3vtoclg 3557 . . . . . 6 (𝐶𝑆 → (𝐶 = 𝐷𝑀 = 𝑁))
1211ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
131, 3, 2, 4, 5, 6ltordlem 11739 . . . . . 6 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1413ancom2s 649 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1512, 14orim12d 964 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → ((𝐶 = 𝐷𝐷 < 𝐶) → (𝑀 = 𝑁𝑁 < 𝑀)))
1615con3d 152 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ (𝑀 = 𝑁𝑁 < 𝑀) → ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
175ralrimiva 3147 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
182eleq1d 2819 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
1918rspccva 3612 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2017, 19sylan 581 . . . . 5 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
213eleq1d 2819 . . . . . . 7 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3612 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2317, 22sylan 581 . . . . 5 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2420, 23anim12dan 620 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
25 axlttri 11285 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
2624, 25syl 17 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
274sseli 3979 . . . . 5 (𝐶𝑆𝐶 ∈ ℝ)
284sseli 3979 . . . . 5 (𝐷𝑆𝐷 ∈ ℝ)
29 axlttri 11285 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3027, 28, 29syl2an 597 . . . 4 ((𝐶𝑆𝐷𝑆) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3130adantl 483 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3216, 26, 313imtr4d 294 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁𝐶 < 𝐷))
337, 32impbid 211 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3062  wss 3949   class class class wbr 5149  cr 11109   < clt 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-pre-lttri 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253
This theorem is referenced by:  leord1  11741  ltord2  11743  rpexpmord  14133  ltexp2  14135  eflt  16060  tanord1  26046  tanord  26047  monotuz  41728  monotoddzzfi  41729
  Copyright terms: Public domain W3C validator