![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relin01 | Structured version Visualization version GIF version |
Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013.) |
Ref | Expression |
---|---|
relin01 | ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11259 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | letric 11359 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) | |
3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) |
4 | 0re 11261 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | letric 11359 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) | |
6 | 4, 5 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) |
7 | pm3.21 471 | . . . . . 6 ⊢ (𝐴 ≤ 1 → (0 ≤ 𝐴 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 1))) | |
8 | 7 | orim2d 968 | . . . . 5 ⊢ (𝐴 ≤ 1 → ((𝐴 ≤ 0 ∨ 0 ≤ 𝐴) → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
9 | 6, 8 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
10 | 9 | orim1d 967 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 1 ∨ 1 ≤ 𝐴) → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))) |
11 | 3, 10 | mpd 15 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) |
12 | df-3or 1087 | . 2 ⊢ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴) ↔ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) | |
13 | 11, 12 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 0cc0 11153 1c1 11154 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: colinearalglem4 28939 |
Copyright terms: Public domain | W3C validator |