| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relin01 | Structured version Visualization version GIF version | ||
| Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013.) |
| Ref | Expression |
|---|---|
| relin01 | ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11181 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | letric 11281 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) |
| 4 | 0re 11183 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | letric 11281 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) | |
| 6 | 4, 5 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) |
| 7 | pm3.21 471 | . . . . . 6 ⊢ (𝐴 ≤ 1 → (0 ≤ 𝐴 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 1))) | |
| 8 | 7 | orim2d 968 | . . . . 5 ⊢ (𝐴 ≤ 1 → ((𝐴 ≤ 0 ∨ 0 ≤ 𝐴) → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
| 9 | 6, 8 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
| 10 | 9 | orim1d 967 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 1 ∨ 1 ≤ 𝐴) → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))) |
| 11 | 3, 10 | mpd 15 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) |
| 12 | df-3or 1087 | . 2 ⊢ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴) ↔ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 1c1 11076 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: colinearalglem4 28843 |
| Copyright terms: Public domain | W3C validator |