MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin01 Structured version   Visualization version   GIF version

Theorem relin01 11742
Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013.)
Assertion
Ref Expression
relin01 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1) ∨ 1 ≤ 𝐴))

Proof of Theorem relin01
StepHypRef Expression
1 1re 11218 . . . 4 1 ∈ ℝ
2 letric 11318 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
31, 2mpan2 689 . . 3 (𝐴 ∈ ℝ → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
4 0re 11220 . . . . . 6 0 ∈ ℝ
5 letric 11318 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴))
64, 5mpan2 689 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴))
7 pm3.21 472 . . . . . 6 (𝐴 ≤ 1 → (0 ≤ 𝐴 → (0 ≤ 𝐴𝐴 ≤ 1)))
87orim2d 965 . . . . 5 (𝐴 ≤ 1 → ((𝐴 ≤ 0 ∨ 0 ≤ 𝐴) → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1))))
96, 8syl5com 31 . . . 4 (𝐴 ∈ ℝ → (𝐴 ≤ 1 → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1))))
109orim1d 964 . . 3 (𝐴 ∈ ℝ → ((𝐴 ≤ 1 ∨ 1 ≤ 𝐴) → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)))
113, 10mpd 15 . 2 (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))
12 df-3or 1088 . 2 ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1) ∨ 1 ≤ 𝐴) ↔ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))
1311, 12sylibr 233 1 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1) ∨ 1 ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3o 1086  wcel 2106   class class class wbr 5148  cr 11111  0cc0 11112  1c1 11113  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-i2m1 11180  ax-1ne0 11181  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by:  colinearalglem4  28422
  Copyright terms: Public domain W3C validator