![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relin01 | Structured version Visualization version GIF version |
Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013.) |
Ref | Expression |
---|---|
relin01 | ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11218 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | letric 11318 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) | |
3 | 1, 2 | mpan2 689 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) |
4 | 0re 11220 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | letric 11318 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) | |
6 | 4, 5 | mpan2 689 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) |
7 | pm3.21 472 | . . . . . 6 ⊢ (𝐴 ≤ 1 → (0 ≤ 𝐴 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 1))) | |
8 | 7 | orim2d 965 | . . . . 5 ⊢ (𝐴 ≤ 1 → ((𝐴 ≤ 0 ∨ 0 ≤ 𝐴) → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
9 | 6, 8 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
10 | 9 | orim1d 964 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 1 ∨ 1 ≤ 𝐴) → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))) |
11 | 3, 10 | mpd 15 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) |
12 | df-3or 1088 | . 2 ⊢ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴) ↔ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) | |
13 | 11, 12 | sylibr 233 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 ∨ w3o 1086 ∈ wcel 2106 class class class wbr 5148 ℝcr 11111 0cc0 11112 1c1 11113 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-i2m1 11180 ax-1ne0 11181 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 |
This theorem is referenced by: colinearalglem4 28422 |
Copyright terms: Public domain | W3C validator |