MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin01 Structured version   Visualization version   GIF version

Theorem relin01 11787
Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013.)
Assertion
Ref Expression
relin01 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1) ∨ 1 ≤ 𝐴))

Proof of Theorem relin01
StepHypRef Expression
1 1re 11261 . . . 4 1 ∈ ℝ
2 letric 11361 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
31, 2mpan2 691 . . 3 (𝐴 ∈ ℝ → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
4 0re 11263 . . . . . 6 0 ∈ ℝ
5 letric 11361 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴))
64, 5mpan2 691 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴))
7 pm3.21 471 . . . . . 6 (𝐴 ≤ 1 → (0 ≤ 𝐴 → (0 ≤ 𝐴𝐴 ≤ 1)))
87orim2d 969 . . . . 5 (𝐴 ≤ 1 → ((𝐴 ≤ 0 ∨ 0 ≤ 𝐴) → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1))))
96, 8syl5com 31 . . . 4 (𝐴 ∈ ℝ → (𝐴 ≤ 1 → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1))))
109orim1d 968 . . 3 (𝐴 ∈ ℝ → ((𝐴 ≤ 1 ∨ 1 ≤ 𝐴) → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)))
113, 10mpd 15 . 2 (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))
12 df-3or 1088 . 2 ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1) ∨ 1 ≤ 𝐴) ↔ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))
1311, 12sylibr 234 1 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴𝐴 ≤ 1) ∨ 1 ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3o 1086  wcel 2108   class class class wbr 5143  cr 11154  0cc0 11155  1c1 11156  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-i2m1 11223  ax-1ne0 11224  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301
This theorem is referenced by:  colinearalglem4  28924
  Copyright terms: Public domain W3C validator