| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relin01 | Structured version Visualization version GIF version | ||
| Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013.) |
| Ref | Expression |
|---|---|
| relin01 | ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11235 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | letric 11335 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴)) |
| 4 | 0re 11237 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | letric 11335 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) | |
| 6 | 4, 5 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) |
| 7 | pm3.21 471 | . . . . . 6 ⊢ (𝐴 ≤ 1 → (0 ≤ 𝐴 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 1))) | |
| 8 | 7 | orim2d 968 | . . . . 5 ⊢ (𝐴 ≤ 1 → ((𝐴 ≤ 0 ∨ 0 ≤ 𝐴) → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
| 9 | 6, 8 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 1 → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)))) |
| 10 | 9 | orim1d 967 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 1 ∨ 1 ≤ 𝐴) → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴))) |
| 11 | 3, 10 | mpd 15 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) |
| 12 | df-3or 1087 | . 2 ⊢ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴) ↔ ((𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) ∨ 1 ≤ 𝐴)) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 0cc0 11129 1c1 11130 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: colinearalglem4 28888 |
| Copyright terms: Public domain | W3C validator |