Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdordlem2 Structured version   Visualization version   GIF version

Theorem mapdordlem2 41639
Description: Lemma for mapdord 41640. Ordering property of projectivity 𝑀. TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the 𝑇 hypothesis. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdord.h 𝐻 = (LHyp‘𝐾)
mapdord.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdord.s 𝑆 = (LSubSp‘𝑈)
mapdord.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdord.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdord.x (𝜑𝑋𝑆)
mapdord.y (𝜑𝑌𝑆)
mapdord.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdord.a 𝐴 = (LSAtoms‘𝑈)
mapdord.f 𝐹 = (LFnl‘𝑈)
mapdord.c 𝐽 = (LSHyp‘𝑈)
mapdord.l 𝐿 = (LKer‘𝑈)
mapdord.t 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
mapdord.q 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
Assertion
Ref Expression
mapdordlem2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Distinct variable groups:   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊   𝑔,𝐹   𝑔,𝐽   𝑔,𝐿   𝑔,𝑂
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝐶(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)   𝑋(𝑔)   𝑌(𝑔)

Proof of Theorem mapdordlem2
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdord.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdord.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdord.s . . . 4 𝑆 = (LSubSp‘𝑈)
4 mapdord.f . . . 4 𝐹 = (LFnl‘𝑈)
5 mapdord.l . . . 4 𝐿 = (LKer‘𝑈)
6 mapdord.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
7 mapdord.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapdord.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdord.x . . . 4 (𝜑𝑋𝑆)
10 mapdord.q . . . 4 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mapdvalc 41631 . . 3 (𝜑 → (𝑀𝑋) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋})
12 mapdord.y . . . 4 (𝜑𝑌𝑆)
131, 2, 3, 4, 5, 6, 7, 8, 12, 10mapdvalc 41631 . . 3 (𝜑 → (𝑀𝑌) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
1411, 13sseq12d 4017 . 2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
15 ss2rab 4071 . . . . 5 ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ ∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
16 eqid 2737 . . . . . . . . 9 (Base‘𝑈) = (Base‘𝑈)
17 mapdord.c . . . . . . . . 9 𝐽 = (LSHyp‘𝑈)
18 mapdord.t . . . . . . . . 9 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
191, 6, 2, 16, 17, 4, 5, 18, 10, 8mapdordlem1a 41636 . . . . . . . 8 (𝜑 → (𝑓𝑇 ↔ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)))
20 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → 𝑓𝐶)
21 idd 24 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → (((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2220, 21embantd 59 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2322ex 412 . . . . . . . 8 (𝜑 → ((𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2419, 23sylbid 240 . . . . . . 7 (𝜑 → (𝑓𝑇 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2524com23 86 . . . . . 6 (𝜑 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → (𝑓𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2625ralimdv2 3163 . . . . 5 (𝜑 → (∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2715, 26biimtrid 242 . . . 4 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
28 mapdord.a . . . . . 6 𝐴 = (LSAtoms‘𝑈)
291, 2, 8dvhlmod 41112 . . . . . 6 (𝜑𝑈 ∈ LMod)
303, 28, 29, 9, 12lssatle 39016 . . . . 5 (𝜑 → (𝑋𝑌 ↔ ∀𝑝𝐴 (𝑝𝑋𝑝𝑌)))
3118mapdordlem1 41638 . . . . . . . . . . 11 (𝑓𝑇 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽))
3231simprbi 496 . . . . . . . . . 10 (𝑓𝑇 → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
3332adantl 481 . . . . . . . . 9 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
348adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3531simplbi 497 . . . . . . . . . . 11 (𝑓𝑇𝑓𝐹)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑓𝐹)
371, 6, 2, 4, 17, 5, 34, 36dochlkr 41387 . . . . . . . . 9 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽 ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽)))
3833, 37mpbid 232 . . . . . . . 8 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽))
3938simpld 494 . . . . . . 7 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
4038simprd 495 . . . . . . . 8 ((𝜑𝑓𝑇) → (𝐿𝑓) ∈ 𝐽)
411, 6, 2, 28, 17, 34, 40dochshpsat 41456 . . . . . . 7 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ (𝑂‘(𝐿𝑓)) ∈ 𝐴))
4239, 41mpbid 232 . . . . . 6 ((𝜑𝑓𝑇) → (𝑂‘(𝐿𝑓)) ∈ 𝐴)
431, 2, 8dvhlvec 41111 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑈 ∈ LVec)
458adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → 𝑝𝐴)
471, 2, 6, 28, 17, 45, 46dochsatshp 41453 . . . . . . . . . 10 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ 𝐽)
4817, 4, 5lshpkrex 39119 . . . . . . . . . 10 ((𝑈 ∈ LVec ∧ (𝑂𝑝) ∈ 𝐽) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
4944, 47, 48syl2anc 584 . . . . . . . . 9 ((𝜑𝑝𝐴) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
50 df-rex 3071 . . . . . . . . 9 (∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝) ↔ ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
5149, 50sylib 218 . . . . . . . 8 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
52 simprl 771 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝐹)
53 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝐿𝑓) = (𝑂𝑝))
5453fveq2d 6910 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝐿𝑓)) = (𝑂‘(𝑂𝑝)))
5554fveq2d 6910 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘(𝑂‘(𝑂𝑝))))
5629adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝𝐴) → 𝑈 ∈ LMod)
5716, 28, 56, 46lsatssv 38999 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝𝐴) → 𝑝 ⊆ (Base‘𝑈))
58 eqid 2737 . . . . . . . . . . . . . . . . . 18 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
591, 58, 2, 16, 6dochcl 41355 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ⊆ (Base‘𝑈)) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
6045, 57, 59syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
611, 58, 6dochoc 41369 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6245, 60, 61syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝐴) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6362adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6455, 63eqtrd 2777 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂𝑝))
6547adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂𝑝) ∈ 𝐽)
6664, 65eqeltrd 2841 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
6752, 66, 31sylanbrc 583 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝑇)
681, 2, 58, 28dih1dimat 41332 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
6945, 46, 68syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
701, 58, 6dochoc 41369 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂𝑝)) = 𝑝)
7145, 69, 70syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑝𝐴) → (𝑂‘(𝑂𝑝)) = 𝑝)
7271adantr 480 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂𝑝)) = 𝑝)
7354, 72eqtr2d 2778 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑝 = (𝑂‘(𝐿𝑓)))
7467, 73jca 511 . . . . . . . . . 10 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7574ex 412 . . . . . . . . 9 ((𝜑𝑝𝐴) → ((𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7675eximdv 1917 . . . . . . . 8 ((𝜑𝑝𝐴) → (∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7751, 76mpd 15 . . . . . . 7 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
78 df-rex 3071 . . . . . . 7 (∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)) ↔ ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7977, 78sylibr 234 . . . . . 6 ((𝜑𝑝𝐴) → ∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)))
80 sseq1 4009 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑋 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑋))
81 sseq1 4009 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑌 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
8280, 81imbi12d 344 . . . . . . 7 (𝑝 = (𝑂‘(𝐿𝑓)) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8382adantl 481 . . . . . 6 ((𝜑𝑝 = (𝑂‘(𝐿𝑓))) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8442, 79, 83ralxfrd 5408 . . . . 5 (𝜑 → (∀𝑝𝐴 (𝑝𝑋𝑝𝑌) ↔ ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8530, 84bitr2d 280 . . . 4 (𝜑 → (∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) ↔ 𝑋𝑌))
8627, 85sylibd 239 . . 3 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → 𝑋𝑌))
87 simplr 769 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → 𝑋𝑌)
88 sstr 3992 . . . . . . . 8 (((𝑂‘(𝐿𝑓)) ⊆ 𝑋𝑋𝑌) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
8988ancoms 458 . . . . . . 7 ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
9089a1i 11 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9187, 90mpand 695 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9291ss2rabdv 4076 . . . 4 ((𝜑𝑋𝑌) → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
9392ex 412 . . 3 (𝜑 → (𝑋𝑌 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
9486, 93impbid 212 . 2 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ 𝑋𝑌))
9514, 94bitrd 279 1 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3951  ran crn 5686  cfv 6561  Basecbs 17247  LModclmod 20858  LSubSpclss 20929  LVecclvec 21101  LSAtomsclsa 38975  LSHypclsh 38976  LFnlclfn 39058  LKerclk 39086  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  DIsoHcdih 41230  ocHcoch 41349  mapdcmpd 41626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lfl 39059  df-lkr 39087  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397  df-mapd 41627
This theorem is referenced by:  mapdord  41640
  Copyright terms: Public domain W3C validator