Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdordlem2 Structured version   Visualization version   GIF version

Theorem mapdordlem2 41604
Description: Lemma for mapdord 41605. Ordering property of projectivity 𝑀. TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the 𝑇 hypothesis. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdord.h 𝐻 = (LHyp‘𝐾)
mapdord.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdord.s 𝑆 = (LSubSp‘𝑈)
mapdord.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdord.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdord.x (𝜑𝑋𝑆)
mapdord.y (𝜑𝑌𝑆)
mapdord.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdord.a 𝐴 = (LSAtoms‘𝑈)
mapdord.f 𝐹 = (LFnl‘𝑈)
mapdord.c 𝐽 = (LSHyp‘𝑈)
mapdord.l 𝐿 = (LKer‘𝑈)
mapdord.t 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
mapdord.q 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
Assertion
Ref Expression
mapdordlem2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Distinct variable groups:   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊   𝑔,𝐹   𝑔,𝐽   𝑔,𝐿   𝑔,𝑂
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝐶(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)   𝑋(𝑔)   𝑌(𝑔)

Proof of Theorem mapdordlem2
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdord.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdord.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdord.s . . . 4 𝑆 = (LSubSp‘𝑈)
4 mapdord.f . . . 4 𝐹 = (LFnl‘𝑈)
5 mapdord.l . . . 4 𝐿 = (LKer‘𝑈)
6 mapdord.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
7 mapdord.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapdord.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdord.x . . . 4 (𝜑𝑋𝑆)
10 mapdord.q . . . 4 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mapdvalc 41596 . . 3 (𝜑 → (𝑀𝑋) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋})
12 mapdord.y . . . 4 (𝜑𝑌𝑆)
131, 2, 3, 4, 5, 6, 7, 8, 12, 10mapdvalc 41596 . . 3 (𝜑 → (𝑀𝑌) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
1411, 13sseq12d 3977 . 2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
15 ss2rab 4030 . . . . 5 ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ ∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
16 eqid 2729 . . . . . . . . 9 (Base‘𝑈) = (Base‘𝑈)
17 mapdord.c . . . . . . . . 9 𝐽 = (LSHyp‘𝑈)
18 mapdord.t . . . . . . . . 9 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
191, 6, 2, 16, 17, 4, 5, 18, 10, 8mapdordlem1a 41601 . . . . . . . 8 (𝜑 → (𝑓𝑇 ↔ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)))
20 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → 𝑓𝐶)
21 idd 24 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → (((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2220, 21embantd 59 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2322ex 412 . . . . . . . 8 (𝜑 → ((𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2419, 23sylbid 240 . . . . . . 7 (𝜑 → (𝑓𝑇 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2524com23 86 . . . . . 6 (𝜑 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → (𝑓𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2625ralimdv2 3142 . . . . 5 (𝜑 → (∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2715, 26biimtrid 242 . . . 4 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
28 mapdord.a . . . . . 6 𝐴 = (LSAtoms‘𝑈)
291, 2, 8dvhlmod 41077 . . . . . 6 (𝜑𝑈 ∈ LMod)
303, 28, 29, 9, 12lssatle 38981 . . . . 5 (𝜑 → (𝑋𝑌 ↔ ∀𝑝𝐴 (𝑝𝑋𝑝𝑌)))
3118mapdordlem1 41603 . . . . . . . . . . 11 (𝑓𝑇 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽))
3231simprbi 496 . . . . . . . . . 10 (𝑓𝑇 → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
3332adantl 481 . . . . . . . . 9 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
348adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3531simplbi 497 . . . . . . . . . . 11 (𝑓𝑇𝑓𝐹)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑓𝐹)
371, 6, 2, 4, 17, 5, 34, 36dochlkr 41352 . . . . . . . . 9 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽 ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽)))
3833, 37mpbid 232 . . . . . . . 8 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽))
3938simpld 494 . . . . . . 7 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
4038simprd 495 . . . . . . . 8 ((𝜑𝑓𝑇) → (𝐿𝑓) ∈ 𝐽)
411, 6, 2, 28, 17, 34, 40dochshpsat 41421 . . . . . . 7 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ (𝑂‘(𝐿𝑓)) ∈ 𝐴))
4239, 41mpbid 232 . . . . . 6 ((𝜑𝑓𝑇) → (𝑂‘(𝐿𝑓)) ∈ 𝐴)
431, 2, 8dvhlvec 41076 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑈 ∈ LVec)
458adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → 𝑝𝐴)
471, 2, 6, 28, 17, 45, 46dochsatshp 41418 . . . . . . . . . 10 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ 𝐽)
4817, 4, 5lshpkrex 39084 . . . . . . . . . 10 ((𝑈 ∈ LVec ∧ (𝑂𝑝) ∈ 𝐽) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
4944, 47, 48syl2anc 584 . . . . . . . . 9 ((𝜑𝑝𝐴) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
50 df-rex 3054 . . . . . . . . 9 (∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝) ↔ ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
5149, 50sylib 218 . . . . . . . 8 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
52 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝐹)
53 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝐿𝑓) = (𝑂𝑝))
5453fveq2d 6844 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝐿𝑓)) = (𝑂‘(𝑂𝑝)))
5554fveq2d 6844 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘(𝑂‘(𝑂𝑝))))
5629adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝𝐴) → 𝑈 ∈ LMod)
5716, 28, 56, 46lsatssv 38964 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝𝐴) → 𝑝 ⊆ (Base‘𝑈))
58 eqid 2729 . . . . . . . . . . . . . . . . . 18 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
591, 58, 2, 16, 6dochcl 41320 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ⊆ (Base‘𝑈)) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
6045, 57, 59syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
611, 58, 6dochoc 41334 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6245, 60, 61syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝐴) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6362adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6455, 63eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂𝑝))
6547adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂𝑝) ∈ 𝐽)
6664, 65eqeltrd 2828 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
6752, 66, 31sylanbrc 583 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝑇)
681, 2, 58, 28dih1dimat 41297 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
6945, 46, 68syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
701, 58, 6dochoc 41334 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂𝑝)) = 𝑝)
7145, 69, 70syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑝𝐴) → (𝑂‘(𝑂𝑝)) = 𝑝)
7271adantr 480 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂𝑝)) = 𝑝)
7354, 72eqtr2d 2765 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑝 = (𝑂‘(𝐿𝑓)))
7467, 73jca 511 . . . . . . . . . 10 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7574ex 412 . . . . . . . . 9 ((𝜑𝑝𝐴) → ((𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7675eximdv 1917 . . . . . . . 8 ((𝜑𝑝𝐴) → (∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7751, 76mpd 15 . . . . . . 7 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
78 df-rex 3054 . . . . . . 7 (∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)) ↔ ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7977, 78sylibr 234 . . . . . 6 ((𝜑𝑝𝐴) → ∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)))
80 sseq1 3969 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑋 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑋))
81 sseq1 3969 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑌 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
8280, 81imbi12d 344 . . . . . . 7 (𝑝 = (𝑂‘(𝐿𝑓)) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8382adantl 481 . . . . . 6 ((𝜑𝑝 = (𝑂‘(𝐿𝑓))) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8442, 79, 83ralxfrd 5358 . . . . 5 (𝜑 → (∀𝑝𝐴 (𝑝𝑋𝑝𝑌) ↔ ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8530, 84bitr2d 280 . . . 4 (𝜑 → (∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) ↔ 𝑋𝑌))
8627, 85sylibd 239 . . 3 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → 𝑋𝑌))
87 simplr 768 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → 𝑋𝑌)
88 sstr 3952 . . . . . . . 8 (((𝑂‘(𝐿𝑓)) ⊆ 𝑋𝑋𝑌) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
8988ancoms 458 . . . . . . 7 ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
9089a1i 11 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9187, 90mpand 695 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9291ss2rabdv 4035 . . . 4 ((𝜑𝑋𝑌) → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
9392ex 412 . . 3 (𝜑 → (𝑋𝑌 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
9486, 93impbid 212 . 2 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ 𝑋𝑌))
9514, 94bitrd 279 1 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3402  wss 3911  ran crn 5632  cfv 6499  Basecbs 17155  LModclmod 20742  LSubSpclss 20813  LVecclvec 20985  LSAtomsclsa 38940  LSHypclsh 38941  LFnlclfn 39023  LKerclk 39051  HLchlt 39316  LHypclh 39951  DVecHcdvh 41045  DIsoHcdih 41195  ocHcoch 41314  mapdcmpd 41591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lsatoms 38942  df-lshyp 38943  df-lfl 39024  df-lkr 39052  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tgrp 40710  df-tendo 40722  df-edring 40724  df-dveca 40970  df-disoa 40996  df-dvech 41046  df-dib 41106  df-dic 41140  df-dih 41196  df-doch 41315  df-djh 41362  df-mapd 41592
This theorem is referenced by:  mapdord  41605
  Copyright terms: Public domain W3C validator