Step | Hyp | Ref
| Expression |
1 | | mapdord.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | mapdord.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | mapdord.s |
. . . 4
⊢ 𝑆 = (LSubSp‘𝑈) |
4 | | mapdord.f |
. . . 4
⊢ 𝐹 = (LFnl‘𝑈) |
5 | | mapdord.l |
. . . 4
⊢ 𝐿 = (LKer‘𝑈) |
6 | | mapdord.o |
. . . 4
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
7 | | mapdord.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
8 | | mapdord.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | | mapdord.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
10 | | mapdord.q |
. . . 4
⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mapdvalc 39570 |
. . 3
⊢ (𝜑 → (𝑀‘𝑋) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋}) |
12 | | mapdord.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 10 | mapdvalc 39570 |
. . 3
⊢ (𝜑 → (𝑀‘𝑌) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌}) |
14 | 11, 13 | sseq12d 3950 |
. 2
⊢ (𝜑 → ((𝑀‘𝑋) ⊆ (𝑀‘𝑌) ↔ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋} ⊆ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌})) |
15 | | ss2rab 4000 |
. . . . 5
⊢ ({𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋} ⊆ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌} ↔ ∀𝑓 ∈ 𝐶 ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑈) =
(Base‘𝑈) |
17 | | mapdord.c |
. . . . . . . . 9
⊢ 𝐽 = (LSHyp‘𝑈) |
18 | | mapdord.t |
. . . . . . . . 9
⊢ 𝑇 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) ∈ 𝐽} |
19 | 1, 6, 2, 16, 17, 4, 5, 18, 10, 8 | mapdordlem1a 39575 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝑇 ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽))) |
20 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽)) → 𝑓 ∈ 𝐶) |
21 | | idd 24 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽)) → (((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌))) |
22 | 20, 21 | embantd 59 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽)) → ((𝑓 ∈ 𝐶 → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌))) |
23 | 22 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → ((𝑓 ∈ 𝐶 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽) → ((𝑓 ∈ 𝐶 → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)))) |
24 | 19, 23 | sylbid 239 |
. . . . . . 7
⊢ (𝜑 → (𝑓 ∈ 𝑇 → ((𝑓 ∈ 𝐶 → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)))) |
25 | 24 | com23 86 |
. . . . . 6
⊢ (𝜑 → ((𝑓 ∈ 𝐶 → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) → (𝑓 ∈ 𝑇 → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)))) |
26 | 25 | ralimdv2 3101 |
. . . . 5
⊢ (𝜑 → (∀𝑓 ∈ 𝐶 ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌) → ∀𝑓 ∈ 𝑇 ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌))) |
27 | 15, 26 | syl5bi 241 |
. . . 4
⊢ (𝜑 → ({𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋} ⊆ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌} → ∀𝑓 ∈ 𝑇 ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌))) |
28 | | mapdord.a |
. . . . . 6
⊢ 𝐴 = (LSAtoms‘𝑈) |
29 | 1, 2, 8 | dvhlmod 39051 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ LMod) |
30 | 3, 28, 29, 9, 12 | lssatle 36956 |
. . . . 5
⊢ (𝜑 → (𝑋 ⊆ 𝑌 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌))) |
31 | 18 | mapdordlem1 39577 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝑇 ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽)) |
32 | 31 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝑇 → (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽) |
33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽) |
34 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
35 | 31 | simplbi 497 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝑇 → 𝑓 ∈ 𝐹) |
36 | 35 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ 𝐹) |
37 | 1, 6, 2, 4, 17, 5,
34, 36 | dochlkr 39326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽 ↔ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝐿‘𝑓) ∈ 𝐽))) |
38 | 33, 37 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝐿‘𝑓) ∈ 𝐽)) |
39 | 38 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
40 | 38 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝐿‘𝑓) ∈ 𝐽) |
41 | 1, 6, 2, 28, 17, 34, 40 | dochshpsat 39395 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ (𝑂‘(𝐿‘𝑓)) ∈ 𝐴)) |
42 | 39, 41 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑂‘(𝐿‘𝑓)) ∈ 𝐴) |
43 | 1, 2, 8 | dvhlvec 39050 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ LVec) |
44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑈 ∈ LVec) |
45 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
46 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐴) |
47 | 1, 2, 6, 28, 17, 45, 46 | dochsatshp 39392 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑂‘𝑝) ∈ 𝐽) |
48 | 17, 4, 5 | lshpkrex 37059 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ LVec ∧ (𝑂‘𝑝) ∈ 𝐽) → ∃𝑓 ∈ 𝐹 (𝐿‘𝑓) = (𝑂‘𝑝)) |
49 | 44, 47, 48 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → ∃𝑓 ∈ 𝐹 (𝐿‘𝑓) = (𝑂‘𝑝)) |
50 | | df-rex 3069 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
𝐹 (𝐿‘𝑓) = (𝑂‘𝑝) ↔ ∃𝑓(𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) |
51 | 49, 50 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → ∃𝑓(𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) |
52 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → 𝑓 ∈ 𝐹) |
53 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝐿‘𝑓) = (𝑂‘𝑝)) |
54 | 53 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑂‘(𝐿‘𝑓)) = (𝑂‘(𝑂‘𝑝))) |
55 | 54 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝑂‘(𝑂‘(𝑂‘𝑝)))) |
56 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑈 ∈ LMod) |
57 | 16, 28, 56, 46 | lsatssv 36939 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ⊆ (Base‘𝑈)) |
58 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
59 | 1, 58, 2, 16, 6 | dochcl 39294 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ⊆ (Base‘𝑈)) → (𝑂‘𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
60 | 45, 57, 59 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑂‘𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
61 | 1, 58, 6 | dochoc 39308 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑂‘𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂‘(𝑂‘𝑝))) = (𝑂‘𝑝)) |
62 | 45, 60, 61 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑂‘(𝑂‘(𝑂‘𝑝))) = (𝑂‘𝑝)) |
63 | 62 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑂‘(𝑂‘(𝑂‘𝑝))) = (𝑂‘𝑝)) |
64 | 55, 63 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝑂‘𝑝)) |
65 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑂‘𝑝) ∈ 𝐽) |
66 | 64, 65 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) ∈ 𝐽) |
67 | 52, 66, 31 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → 𝑓 ∈ 𝑇) |
68 | 1, 2, 58, 28 | dih1dimat 39271 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
69 | 45, 46, 68 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
70 | 1, 58, 6 | dochoc 39308 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂‘𝑝)) = 𝑝) |
71 | 45, 69, 70 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑂‘(𝑂‘𝑝)) = 𝑝) |
72 | 71 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑂‘(𝑂‘𝑝)) = 𝑝) |
73 | 54, 72 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → 𝑝 = (𝑂‘(𝐿‘𝑓))) |
74 | 67, 73 | jca 511 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐴) ∧ (𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝))) → (𝑓 ∈ 𝑇 ∧ 𝑝 = (𝑂‘(𝐿‘𝑓)))) |
75 | 74 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → ((𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝)) → (𝑓 ∈ 𝑇 ∧ 𝑝 = (𝑂‘(𝐿‘𝑓))))) |
76 | 75 | eximdv 1921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (∃𝑓(𝑓 ∈ 𝐹 ∧ (𝐿‘𝑓) = (𝑂‘𝑝)) → ∃𝑓(𝑓 ∈ 𝑇 ∧ 𝑝 = (𝑂‘(𝐿‘𝑓))))) |
77 | 51, 76 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → ∃𝑓(𝑓 ∈ 𝑇 ∧ 𝑝 = (𝑂‘(𝐿‘𝑓)))) |
78 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑓 ∈
𝑇 𝑝 = (𝑂‘(𝐿‘𝑓)) ↔ ∃𝑓(𝑓 ∈ 𝑇 ∧ 𝑝 = (𝑂‘(𝐿‘𝑓)))) |
79 | 77, 78 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → ∃𝑓 ∈ 𝑇 𝑝 = (𝑂‘(𝐿‘𝑓))) |
80 | | sseq1 3942 |
. . . . . . . 8
⊢ (𝑝 = (𝑂‘(𝐿‘𝑓)) → (𝑝 ⊆ 𝑋 ↔ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋)) |
81 | | sseq1 3942 |
. . . . . . . 8
⊢ (𝑝 = (𝑂‘(𝐿‘𝑓)) → (𝑝 ⊆ 𝑌 ↔ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) |
82 | 80, 81 | imbi12d 344 |
. . . . . . 7
⊢ (𝑝 = (𝑂‘(𝐿‘𝑓)) → ((𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌) ↔ ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌))) |
83 | 82 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 = (𝑂‘(𝐿‘𝑓))) → ((𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌) ↔ ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌))) |
84 | 42, 79, 83 | ralxfrd 5326 |
. . . . 5
⊢ (𝜑 → (∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌) ↔ ∀𝑓 ∈ 𝑇 ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌))) |
85 | 30, 84 | bitr2d 279 |
. . . 4
⊢ (𝜑 → (∀𝑓 ∈ 𝑇 ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌) ↔ 𝑋 ⊆ 𝑌)) |
86 | 27, 85 | sylibd 238 |
. . 3
⊢ (𝜑 → ({𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋} ⊆ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌} → 𝑋 ⊆ 𝑌)) |
87 | | simplr 765 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑓 ∈ 𝐶) → 𝑋 ⊆ 𝑌) |
88 | | sstr 3925 |
. . . . . . . 8
⊢ (((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑌) → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌) |
89 | 88 | ancoms 458 |
. . . . . . 7
⊢ ((𝑋 ⊆ 𝑌 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌) |
90 | 89 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑓 ∈ 𝐶) → ((𝑋 ⊆ 𝑌 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) |
91 | 87, 90 | mpand 691 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑓 ∈ 𝐶) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌)) |
92 | 91 | ss2rabdv 4005 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋} ⊆ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌}) |
93 | 92 | ex 412 |
. . 3
⊢ (𝜑 → (𝑋 ⊆ 𝑌 → {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋} ⊆ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌})) |
94 | 86, 93 | impbid 211 |
. 2
⊢ (𝜑 → ({𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑋} ⊆ {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑌} ↔ 𝑋 ⊆ 𝑌)) |
95 | 14, 94 | bitrd 278 |
1
⊢ (𝜑 → ((𝑀‘𝑋) ⊆ (𝑀‘𝑌) ↔ 𝑋 ⊆ 𝑌)) |