Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by NM, 29-May-1999.) |
Ref | Expression |
---|---|
fveq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fveq2d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fveq2 6717 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹‘𝐴) = (𝐹‘𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
Copyright terms: Public domain | W3C validator |