Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnusnd Structured version   Visualization version   GIF version

Theorem mnusnd 44229
Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnusnd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnusnd.2 (𝜑𝑈𝑀)
mnusnd.3 (𝜑𝐴𝑈)
Assertion
Ref Expression
mnusnd (𝜑 → {𝐴} ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnusnd
StepHypRef Expression
1 mnusnd.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnusnd.2 . 2 (𝜑𝑈𝑀)
3 mnusnd.3 . . 3 (𝜑𝐴𝑈)
41, 2, 3mnupwd 44228 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 snsspw 4816 . . 3 {𝐴} ⊆ 𝒫 𝐴
65a1i 11 . 2 (𝜑 → {𝐴} ⊆ 𝒫 𝐴)
71, 2, 4, 6mnussd 44224 1 (𝜑 → {𝐴} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wral 3046  wrex 3055  wss 3922  𝒫 cpw 4571  {csn 4597   cuni 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-in 3929  df-ss 3939  df-nul 4305  df-pw 4573  df-sn 4598  df-uni 4880
This theorem is referenced by:  mnuprdlem4  44236
  Copyright terms: Public domain W3C validator