Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnusnd | Structured version Visualization version GIF version |
Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnusnd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnusnd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnusnd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
mnusnd | ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnusnd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnusnd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnusnd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 1, 2, 3 | mnupwd 41394 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
5 | snsspw 4736 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → {𝐴} ⊆ 𝒫 𝐴) |
7 | 1, 2, 4, 6 | mnussd 41390 | 1 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1537 = wceq 1539 ∈ wcel 2112 {cab 2736 ∀wral 3071 ∃wrex 3072 ⊆ wss 3861 𝒫 cpw 4498 {csn 4526 ∪ cuni 4802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3864 df-in 3868 df-ss 3878 df-nul 4229 df-pw 4500 df-sn 4527 df-uni 4803 |
This theorem is referenced by: mnuprdlem4 41402 |
Copyright terms: Public domain | W3C validator |