Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnugrud Structured version   Visualization version   GIF version

Theorem mnugrud 41791
Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnugrud.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnugrud.2 (𝜑𝑈𝑀)
Assertion
Ref Expression
mnugrud (𝜑𝑈 ∈ Univ)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnugrud
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnugrud.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnugrud.2 . . 3 (𝜑𝑈𝑀)
31, 2mnutrd 41787 . 2 (𝜑 → Tr 𝑈)
42adantr 480 . . . . 5 ((𝜑𝑥𝑈) → 𝑈𝑀)
5 simpr 484 . . . . 5 ((𝜑𝑥𝑈) → 𝑥𝑈)
61, 4, 5mnupwd 41774 . . . 4 ((𝜑𝑥𝑈) → 𝒫 𝑥𝑈)
72ad2antrr 722 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → 𝑈𝑀)
85adantr 480 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → 𝑥𝑈)
9 simpr 484 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → 𝑦𝑈)
101, 7, 8, 9mnuprd 41783 . . . . 5 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
1110ralrimiva 3107 . . . 4 ((𝜑𝑥𝑈) → ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
122ad2antrr 722 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → 𝑈𝑀)
135adantr 480 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → 𝑥𝑈)
14 elmapi 8595 . . . . . . . 8 (𝑦 ∈ (𝑈m 𝑥) → 𝑦:𝑥𝑈)
1514adantl 481 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → 𝑦:𝑥𝑈)
161, 12, 13, 15mnurnd 41790 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → ran 𝑦𝑈)
171, 12, 16mnuunid 41784 . . . . 5 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → ran 𝑦𝑈)
1817ralrimiva 3107 . . . 4 ((𝜑𝑥𝑈) → ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)
196, 11, 183jca 1126 . . 3 ((𝜑𝑥𝑈) → (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
2019ralrimiva 3107 . 2 (𝜑 → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
21 elgrug 10479 . . 3 (𝑈𝑀 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
222, 21syl 17 . 2 (𝜑 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
233, 20, 22mpbir2and 709 1 (𝜑𝑈 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  wss 3883  𝒫 cpw 4530  {cpr 4560   cuni 4836  Tr wtr 5187  ran crn 5581  wf 6414  (class class class)co 7255  m cmap 8573  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-fr 5535  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-gru 10478
This theorem is referenced by:  grumnueq  41794
  Copyright terms: Public domain W3C validator