Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnugrud | Structured version Visualization version GIF version |
Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnugrud.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnugrud.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
Ref | Expression |
---|---|
mnugrud | ⊢ (𝜑 → 𝑈 ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnugrud.1 | . . 3 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnugrud.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | 1, 2 | mnutrd 41898 | . 2 ⊢ (𝜑 → Tr 𝑈) |
4 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑀) |
5 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
6 | 1, 4, 5 | mnupwd 41885 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
7 | 2 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑈 ∈ 𝑀) |
8 | 5 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈) |
9 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
10 | 1, 7, 8, 9 | mnuprd 41894 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
11 | 10 | ralrimiva 3103 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
12 | 2 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑈 ∈ 𝑀) |
13 | 5 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑥 ∈ 𝑈) |
14 | elmapi 8637 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝑈 ↑m 𝑥) → 𝑦:𝑥⟶𝑈) | |
15 | 14 | adantl 482 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑦:𝑥⟶𝑈) |
16 | 1, 12, 13, 15 | mnurnd 41901 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ran 𝑦 ∈ 𝑈) |
17 | 1, 12, 16 | mnuunid 41895 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ∪ ran 𝑦 ∈ 𝑈) |
18 | 17 | ralrimiva 3103 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) |
19 | 6, 11, 18 | 3jca 1127 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
20 | 19 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
21 | elgrug 10548 | . . 3 ⊢ (𝑈 ∈ 𝑀 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
23 | 3, 20, 22 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝑈 ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 𝒫 cpw 4533 {cpr 4563 ∪ cuni 4839 Tr wtr 5191 ran crn 5590 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 Univcgru 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-fr 5544 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-gru 10547 |
This theorem is referenced by: grumnueq 41905 |
Copyright terms: Public domain | W3C validator |