|   | Mathbox for Rohan Ridenour | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnugrud | Structured version Visualization version GIF version | ||
| Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| mnugrud.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | 
| mnugrud.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) | 
| Ref | Expression | 
|---|---|
| mnugrud | ⊢ (𝜑 → 𝑈 ∈ Univ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mnugrud.1 | . . 3 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnugrud.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | 1, 2 | mnutrd 44299 | . 2 ⊢ (𝜑 → Tr 𝑈) | 
| 4 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑀) | 
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
| 6 | 1, 4, 5 | mnupwd 44286 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) | 
| 7 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑈 ∈ 𝑀) | 
| 8 | 5 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈) | 
| 9 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
| 10 | 1, 7, 8, 9 | mnuprd 44295 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) | 
| 11 | 10 | ralrimiva 3146 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) | 
| 12 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑈 ∈ 𝑀) | 
| 13 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑥 ∈ 𝑈) | 
| 14 | elmapi 8889 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝑈 ↑m 𝑥) → 𝑦:𝑥⟶𝑈) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑦:𝑥⟶𝑈) | 
| 16 | 1, 12, 13, 15 | mnurnd 44302 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ran 𝑦 ∈ 𝑈) | 
| 17 | 1, 12, 16 | mnuunid 44296 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ∪ ran 𝑦 ∈ 𝑈) | 
| 18 | 17 | ralrimiva 3146 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) | 
| 19 | 6, 11, 18 | 3jca 1129 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) | 
| 20 | 19 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) | 
| 21 | elgrug 10832 | . . 3 ⊢ (𝑈 ∈ 𝑀 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
| 22 | 2, 21 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | 
| 23 | 3, 20, 22 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑈 ∈ Univ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 𝒫 cpw 4600 {cpr 4628 ∪ cuni 4907 Tr wtr 5259 ran crn 5686 ⟶wf 6557 (class class class)co 7431 ↑m cmap 8866 Univcgru 10830 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-fr 5637 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 df-gru 10831 | 
| This theorem is referenced by: grumnueq 44306 | 
| Copyright terms: Public domain | W3C validator |