![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnugrud | Structured version Visualization version GIF version |
Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnugrud.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnugrud.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
Ref | Expression |
---|---|
mnugrud | ⊢ (𝜑 → 𝑈 ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnugrud.1 | . . 3 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnugrud.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | 1, 2 | mnutrd 43799 | . 2 ⊢ (𝜑 → Tr 𝑈) |
4 | 2 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑀) |
5 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
6 | 1, 4, 5 | mnupwd 43786 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
7 | 2 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑈 ∈ 𝑀) |
8 | 5 | adantr 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈) |
9 | simpr 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
10 | 1, 7, 8, 9 | mnuprd 43795 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
11 | 10 | ralrimiva 3136 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
12 | 2 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑈 ∈ 𝑀) |
13 | 5 | adantr 479 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑥 ∈ 𝑈) |
14 | elmapi 8866 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝑈 ↑m 𝑥) → 𝑦:𝑥⟶𝑈) | |
15 | 14 | adantl 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑦:𝑥⟶𝑈) |
16 | 1, 12, 13, 15 | mnurnd 43802 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ran 𝑦 ∈ 𝑈) |
17 | 1, 12, 16 | mnuunid 43796 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ∪ ran 𝑦 ∈ 𝑈) |
18 | 17 | ralrimiva 3136 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) |
19 | 6, 11, 18 | 3jca 1125 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
20 | 19 | ralrimiva 3136 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
21 | elgrug 10815 | . . 3 ⊢ (𝑈 ∈ 𝑀 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
23 | 3, 20, 22 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝑈 ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3051 ∃wrex 3060 ⊆ wss 3945 𝒫 cpw 4603 {cpr 4631 ∪ cuni 4908 Tr wtr 5265 ran crn 5678 ⟶wf 6543 (class class class)co 7417 ↑m cmap 8843 Univcgru 10813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-reg 9615 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-fr 5632 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-map 8845 df-gru 10814 |
This theorem is referenced by: grumnueq 43806 |
Copyright terms: Public domain | W3C validator |