![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnugrud | Structured version Visualization version GIF version |
Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnugrud.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnugrud.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
Ref | Expression |
---|---|
mnugrud | ⊢ (𝜑 → 𝑈 ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnugrud.1 | . . 3 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnugrud.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | 1, 2 | mnutrd 43029 | . 2 ⊢ (𝜑 → Tr 𝑈) |
4 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑀) |
5 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
6 | 1, 4, 5 | mnupwd 43016 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
7 | 2 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑈 ∈ 𝑀) |
8 | 5 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈) |
9 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
10 | 1, 7, 8, 9 | mnuprd 43025 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → {𝑥, 𝑦} ∈ 𝑈) |
11 | 10 | ralrimiva 3146 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
12 | 2 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑈 ∈ 𝑀) |
13 | 5 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑥 ∈ 𝑈) |
14 | elmapi 8842 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝑈 ↑m 𝑥) → 𝑦:𝑥⟶𝑈) | |
15 | 14 | adantl 482 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → 𝑦:𝑥⟶𝑈) |
16 | 1, 12, 13, 15 | mnurnd 43032 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ran 𝑦 ∈ 𝑈) |
17 | 1, 12, 16 | mnuunid 43026 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (𝑈 ↑m 𝑥)) → ∪ ran 𝑦 ∈ 𝑈) |
18 | 17 | ralrimiva 3146 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) |
19 | 6, 11, 18 | 3jca 1128 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
20 | 19 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
21 | elgrug 10786 | . . 3 ⊢ (𝑈 ∈ 𝑀 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) |
23 | 3, 20, 22 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝑈 ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∀wal 1539 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 Tr wtr 5265 ran crn 5677 ⟶wf 6539 (class class class)co 7408 ↑m cmap 8819 Univcgru 10784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-reg 9586 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-fr 5631 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-gru 10785 |
This theorem is referenced by: grumnueq 43036 |
Copyright terms: Public domain | W3C validator |