Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnugrud Structured version   Visualization version   GIF version

Theorem mnugrud 44382
Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnugrud.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnugrud.2 (𝜑𝑈𝑀)
Assertion
Ref Expression
mnugrud (𝜑𝑈 ∈ Univ)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnugrud
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnugrud.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnugrud.2 . . 3 (𝜑𝑈𝑀)
31, 2mnutrd 44378 . 2 (𝜑 → Tr 𝑈)
42adantr 480 . . . . 5 ((𝜑𝑥𝑈) → 𝑈𝑀)
5 simpr 484 . . . . 5 ((𝜑𝑥𝑈) → 𝑥𝑈)
61, 4, 5mnupwd 44365 . . . 4 ((𝜑𝑥𝑈) → 𝒫 𝑥𝑈)
72ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → 𝑈𝑀)
85adantr 480 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → 𝑥𝑈)
9 simpr 484 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → 𝑦𝑈)
101, 7, 8, 9mnuprd 44374 . . . . 5 (((𝜑𝑥𝑈) ∧ 𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
1110ralrimiva 3124 . . . 4 ((𝜑𝑥𝑈) → ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
122ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → 𝑈𝑀)
135adantr 480 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → 𝑥𝑈)
14 elmapi 8779 . . . . . . . 8 (𝑦 ∈ (𝑈m 𝑥) → 𝑦:𝑥𝑈)
1514adantl 481 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → 𝑦:𝑥𝑈)
161, 12, 13, 15mnurnd 44381 . . . . . 6 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → ran 𝑦𝑈)
171, 12, 16mnuunid 44375 . . . . 5 (((𝜑𝑥𝑈) ∧ 𝑦 ∈ (𝑈m 𝑥)) → ran 𝑦𝑈)
1817ralrimiva 3124 . . . 4 ((𝜑𝑥𝑈) → ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)
196, 11, 183jca 1128 . . 3 ((𝜑𝑥𝑈) → (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
2019ralrimiva 3124 . 2 (𝜑 → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
21 elgrug 10689 . . 3 (𝑈𝑀 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
222, 21syl 17 . 2 (𝜑 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
233, 20, 22mpbir2and 713 1 (𝜑𝑈 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  wss 3897  𝒫 cpw 4549  {cpr 4577   cuni 4858  Tr wtr 5200  ran crn 5620  wf 6483  (class class class)co 7352  m cmap 8756  Univcgru 10687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-reg 9484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-fr 5572  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-gru 10688
This theorem is referenced by:  grumnueq  44385
  Copyright terms: Public domain W3C validator