![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnuprssd | Structured version Visualization version GIF version |
Description: A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnuprssd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnuprssd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnuprssd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
mnuprssd.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
mnuprssd.5 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
mnuprssd | ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprssd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnuprssd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnuprssd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
4 | 1, 2, 3 | mnupwd 44236 | . 2 ⊢ (𝜑 → 𝒫 𝐶 ∈ 𝑈) |
5 | mnuprssd.4 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
6 | 3, 5 | sselpwd 5346 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
7 | mnuprssd.5 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
8 | 3, 7 | sselpwd 5346 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐶) |
9 | 6, 8 | prssd 4847 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝐶) |
10 | 1, 2, 4, 9 | mnussd 44232 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: mnuprss2d 44239 mnuprd 44245 |
Copyright terms: Public domain | W3C validator |