| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnuprssd | Structured version Visualization version GIF version | ||
| Description: A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mnuprssd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| mnuprssd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
| mnuprssd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| mnuprssd.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| mnuprssd.5 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| mnuprssd | ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnuprssd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnuprssd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | mnuprssd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 4 | 1, 2, 3 | mnupwd 44256 | . 2 ⊢ (𝜑 → 𝒫 𝐶 ∈ 𝑈) |
| 5 | mnuprssd.4 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 6 | 3, 5 | sselpwd 5283 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
| 7 | mnuprssd.5 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 8 | 3, 7 | sselpwd 5283 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐶) |
| 9 | 6, 8 | prssd 4786 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝐶) |
| 10 | 1, 2, 4, 9 | mnussd 44252 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 𝒫 cpw 4563 {cpr 4591 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: mnuprss2d 44259 mnuprd 44265 |
| Copyright terms: Public domain | W3C validator |