![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnuprssd | Structured version Visualization version GIF version |
Description: A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnuprssd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnuprssd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnuprssd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
mnuprssd.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
mnuprssd.5 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
mnuprssd | ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprssd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnuprssd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnuprssd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
4 | 1, 2, 3 | mnupwd 43328 | . 2 ⊢ (𝜑 → 𝒫 𝐶 ∈ 𝑈) |
5 | mnuprssd.4 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
6 | 3, 5 | sselpwd 5325 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
7 | mnuprssd.5 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
8 | 3, 7 | sselpwd 5325 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐶) |
9 | 6, 8 | prssd 4824 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝐶) |
10 | 1, 2, 4, 9 | mnussd 43324 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 {cab 2707 ∀wral 3059 ∃wrex 3068 ⊆ wss 3947 𝒫 cpw 4601 {cpr 4629 ∪ cuni 4907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-pw 4603 df-sn 4628 df-pr 4630 df-uni 4908 |
This theorem is referenced by: mnuprss2d 43331 mnuprd 43337 |
Copyright terms: Public domain | W3C validator |