Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprssd Structured version   Visualization version   GIF version

Theorem mnuprssd 41887
Description: A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuprssd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuprssd.2 (𝜑𝑈𝑀)
mnuprssd.3 (𝜑𝐶𝑈)
mnuprssd.4 (𝜑𝐴𝐶)
mnuprssd.5 (𝜑𝐵𝐶)
Assertion
Ref Expression
mnuprssd (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐶(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuprssd
StepHypRef Expression
1 mnuprssd.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnuprssd.2 . 2 (𝜑𝑈𝑀)
3 mnuprssd.3 . . 3 (𝜑𝐶𝑈)
41, 2, 3mnupwd 41885 . 2 (𝜑 → 𝒫 𝐶𝑈)
5 mnuprssd.4 . . . 4 (𝜑𝐴𝐶)
63, 5sselpwd 5250 . . 3 (𝜑𝐴 ∈ 𝒫 𝐶)
7 mnuprssd.5 . . . 4 (𝜑𝐵𝐶)
83, 7sselpwd 5250 . . 3 (𝜑𝐵 ∈ 𝒫 𝐶)
96, 8prssd 4755 . 2 (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝐶)
101, 2, 4, 9mnussd 41881 1 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  wss 3887  𝒫 cpw 4533  {cpr 4563   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840
This theorem is referenced by:  mnuprss2d  41888  mnuprd  41894
  Copyright terms: Public domain W3C validator