MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfsummodslem1 Structured version   Visualization version   GIF version

Theorem modfsummodslem1 15764
Description: Lemma 1 for modfsummods 15765. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
modfsummodslem1 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
Distinct variable groups:   𝐴,𝑘   𝑧,𝑘
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑘)

Proof of Theorem modfsummodslem1
StepHypRef Expression
1 vsnid 4629 . . 3 𝑧 ∈ {𝑧}
2 elun2 4148 . . 3 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧}))
31, 2ax-mp 5 . 2 𝑧 ∈ (𝐴 ∪ {𝑧})
4 rspcsbela 4403 . 2 ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
53, 4mpan 690 1 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3045  csb 3864  cun 3914  {csn 4591  cz 12535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-sn 4592
This theorem is referenced by:  modfsummods  15765
  Copyright terms: Public domain W3C validator