| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modfsummodslem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for modfsummods 15766. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| modfsummodslem1 | ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid 4635 | . . 3 ⊢ 𝑧 ∈ {𝑧} | |
| 2 | elun2 4154 | . . 3 ⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧})) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑧 ∈ (𝐴 ∪ {𝑧}) |
| 4 | rspcsbela 4409 | . 2 ⊢ ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | |
| 5 | 3, 4 | mpan 690 | 1 ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3046 ⦋csb 3870 ∪ cun 3920 {csn 4597 ℤcz 12545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-sn 4598 |
| This theorem is referenced by: modfsummods 15766 |
| Copyright terms: Public domain | W3C validator |