![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modfsummodslem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for modfsummods 15736. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
Ref | Expression |
---|---|
modfsummodslem1 | ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 4657 | . . 3 ⊢ 𝑧 ∈ {𝑧} | |
2 | elun2 4169 | . . 3 ⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑧 ∈ (𝐴 ∪ {𝑧}) |
4 | rspcsbela 4427 | . 2 ⊢ ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | |
5 | 3, 4 | mpan 687 | 1 ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∀wral 3053 ⦋csb 3885 ∪ cun 3938 {csn 4620 ℤcz 12555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-sn 4621 |
This theorem is referenced by: modfsummods 15736 |
Copyright terms: Public domain | W3C validator |