MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfsummods Structured version   Visualization version   GIF version

Theorem modfsummods 15494
Description: Induction step for modfsummod 15495. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
modfsummods ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑧,𝑘
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑘)   𝑁(𝑧)

Proof of Theorem modfsummods
StepHypRef Expression
1 snssi 4743 . . 3 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
2 ssequn1 4115 . . . 4 ({𝑧} ⊆ 𝐴 ↔ ({𝑧} ∪ 𝐴) = 𝐴)
3 uncom 4088 . . . . . . . 8 ({𝑧} ∪ 𝐴) = (𝐴 ∪ {𝑧})
43eqeq1i 2743 . . . . . . 7 (({𝑧} ∪ 𝐴) = 𝐴 ↔ (𝐴 ∪ {𝑧}) = 𝐴)
5 sumeq1 15389 . . . . . . . . . 10 (𝐴 = (𝐴 ∪ {𝑧}) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵)
65oveq1d 7284 . . . . . . . . 9 (𝐴 = (𝐴 ∪ {𝑧}) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁))
7 sumeq1 15389 . . . . . . . . . 10 (𝐴 = (𝐴 ∪ {𝑧}) → Σ𝑘𝐴 (𝐵 mod 𝑁) = Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁))
87oveq1d 7284 . . . . . . . . 9 (𝐴 = (𝐴 ∪ {𝑧}) → (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
96, 8eqeq12d 2754 . . . . . . . 8 (𝐴 = (𝐴 ∪ {𝑧}) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
109eqcoms 2746 . . . . . . 7 ((𝐴 ∪ {𝑧}) = 𝐴 → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
114, 10sylbi 216 . . . . . 6 (({𝑧} ∪ 𝐴) = 𝐴 → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
1211biimpd 228 . . . . 5 (({𝑧} ∪ 𝐴) = 𝐴 → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
1312a1d 25 . . . 4 (({𝑧} ∪ 𝐴) = 𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
142, 13sylbi 216 . . 3 ({𝑧} ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
151, 14syl 17 . 2 (𝑧𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
16 df-nel 3050 . . 3 (𝑧𝐴 ↔ ¬ 𝑧𝐴)
17 simp1 1135 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝐴 ∈ Fin)
1817ad2antlr 724 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝐴 ∈ Fin)
19 simpl 483 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧𝐴)
2019adantr 481 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝑧𝐴)
21 vex 3435 . . . . . . . 8 𝑧 ∈ V
2220, 21jctil 520 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 ∈ V ∧ 𝑧𝐴))
23 simplr3 1216 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
24 fsumsplitsnun 15456 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
2518, 22, 23, 24syl3anc 1370 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
2625oveq1d 7284 . . . . 5 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
27 ralunb 4126 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
28 simpl 483 . . . . . . . . . . . . . 14 ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘𝐴 𝐵 ∈ ℤ)
2927, 28sylbi 216 . . . . . . . . . . . . 13 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘𝐴 𝐵 ∈ ℤ)
30 fsumzcl2 15440 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
3129, 30sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
32313adant2 1130 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
3332adantl 482 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → Σ𝑘𝐴 𝐵 ∈ ℤ)
3433zred 12415 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → Σ𝑘𝐴 𝐵 ∈ ℝ)
35 modfsummodslem1 15493 . . . . . . . . . . . 12 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
36353ad2ant3 1134 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3736adantl 482 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3837zred 12415 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧 / 𝑘𝐵 ∈ ℝ)
39 nnrp 12730 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
40393ad2ant2 1133 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑁 ∈ ℝ+)
4140adantl 482 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑁 ∈ ℝ+)
42 modaddabs 13618 . . . . . . . . 9 ((Σ𝑘𝐴 𝐵 ∈ ℝ ∧ 𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
4334, 38, 41, 42syl3anc 1370 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
4443eqcomd 2744 . . . . . . 7 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
4544adantr 481 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
46 simpr 485 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
4735zred 12415 . . . . . . . . . . . . 13 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℝ)
48473ad2ant3 1134 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℝ)
4948adantl 482 . . . . . . . . . . 11 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5049, 41jca 512 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → (𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5150adantr 481 . . . . . . . . 9 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
52 modabs2 13614 . . . . . . . . . 10 ((𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
5352eqcomd 2744 . . . . . . . . 9 ((𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑧 / 𝑘𝐵 mod 𝑁) = ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁))
5451, 53syl 17 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 / 𝑘𝐵 mod 𝑁) = ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁))
5546, 54oveq12d 7287 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)))
5655oveq1d 7284 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
5745, 56eqtrd 2778 . . . . 5 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
58 zmodcl 13600 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℕ0)
5958nn0zd 12413 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℤ)
6059expcom 414 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝐵 ∈ ℤ → (𝐵 mod 𝑁) ∈ ℤ))
6160ralimdv 3109 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (∀𝑘𝐴 𝐵 ∈ ℤ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6261com12 32 . . . . . . . . . . . . . 14 (∀𝑘𝐴 𝐵 ∈ ℤ → (𝑁 ∈ ℕ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6362adantr 481 . . . . . . . . . . . . 13 ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (𝑁 ∈ ℕ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6427, 63sylbi 216 . . . . . . . . . . . 12 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → (𝑁 ∈ ℕ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6564impcom 408 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
66653adant1 1129 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
6717, 66jca 512 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
68 fsumzcl2 15440 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
6968zred 12415 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ)
7067, 69syl 17 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ)
7170ad2antlr 724 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ)
7235anim1i 615 . . . . . . . . . . . 12 ((∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ))
7372ancoms 459 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ))
74 zmodcl 13600 . . . . . . . . . . 11 ((𝑧 / 𝑘𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
7675nn0red 12283 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ)
77763adant1 1129 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ)
7877ad2antlr 724 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ)
7940ad2antlr 724 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝑁 ∈ ℝ+)
80 modaddabs 13618 . . . . . . 7 ((Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ ∧ (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
8171, 78, 79, 80syl3anc 1370 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
8260ralimdv 3109 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ))
8382imp 407 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
84833adant1 1129 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
8584ad2antlr 724 . . . . . . . . . 10 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
86 fsumsplitsnun 15456 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
8718, 22, 85, 86syl3anc 1370 . . . . . . . . 9 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
88 csbov1g 7314 . . . . . . . . . . 11 (𝑧 ∈ V → 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
8921, 88mp1i 13 . . . . . . . . . 10 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
9089oveq2d 7285 . . . . . . . . 9 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)))
9187, 90eqtrd 2778 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)))
9291eqcomd 2744 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁))
9392oveq1d 7284 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
9481, 93eqtrd 2778 . . . . 5 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
9526, 57, 943eqtrd 2782 . . . 4 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
9695exp31 420 . . 3 (𝑧𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
9716, 96sylbir 234 . 2 𝑧𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
9815, 97pm2.61i 182 1 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wnel 3049  wral 3064  Vcvv 3431  csb 3833  cun 3886  wss 3888  {csn 4563  (class class class)co 7269  Fincfn 8722  cr 10859   + caddc 10863  cn 11962  0cn0 12222  cz 12308  +crp 12719   mod cmo 13578  Σcsu 15386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-inf2 9388  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8487  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-sup 9190  df-inf 9191  df-oi 9258  df-card 9686  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-3 12026  df-n0 12223  df-z 12309  df-uz 12572  df-rp 12720  df-fz 13229  df-fzo 13372  df-fl 13501  df-mod 13579  df-seq 13711  df-exp 13772  df-hash 14034  df-cj 14799  df-re 14800  df-im 14801  df-sqrt 14935  df-abs 14936  df-clim 15186  df-sum 15387
This theorem is referenced by:  modfsummod  15495
  Copyright terms: Public domain W3C validator