MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfsummods Structured version   Visualization version   GIF version

Theorem modfsummods 15829
Description: Induction step for modfsummod 15830. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
modfsummods ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑧,𝑘
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑘)   𝑁(𝑧)

Proof of Theorem modfsummods
StepHypRef Expression
1 snssi 4808 . . 3 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
2 ssequn1 4186 . . . 4 ({𝑧} ⊆ 𝐴 ↔ ({𝑧} ∪ 𝐴) = 𝐴)
3 uncom 4158 . . . . . . . 8 ({𝑧} ∪ 𝐴) = (𝐴 ∪ {𝑧})
43eqeq1i 2742 . . . . . . 7 (({𝑧} ∪ 𝐴) = 𝐴 ↔ (𝐴 ∪ {𝑧}) = 𝐴)
5 sumeq1 15725 . . . . . . . . . 10 (𝐴 = (𝐴 ∪ {𝑧}) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵)
65oveq1d 7446 . . . . . . . . 9 (𝐴 = (𝐴 ∪ {𝑧}) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁))
7 sumeq1 15725 . . . . . . . . . 10 (𝐴 = (𝐴 ∪ {𝑧}) → Σ𝑘𝐴 (𝐵 mod 𝑁) = Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁))
87oveq1d 7446 . . . . . . . . 9 (𝐴 = (𝐴 ∪ {𝑧}) → (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
96, 8eqeq12d 2753 . . . . . . . 8 (𝐴 = (𝐴 ∪ {𝑧}) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
109eqcoms 2745 . . . . . . 7 ((𝐴 ∪ {𝑧}) = 𝐴 → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
114, 10sylbi 217 . . . . . 6 (({𝑧} ∪ 𝐴) = 𝐴 → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
1211biimpd 229 . . . . 5 (({𝑧} ∪ 𝐴) = 𝐴 → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
1312a1d 25 . . . 4 (({𝑧} ∪ 𝐴) = 𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
142, 13sylbi 217 . . 3 ({𝑧} ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
151, 14syl 17 . 2 (𝑧𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
16 df-nel 3047 . . 3 (𝑧𝐴 ↔ ¬ 𝑧𝐴)
17 simp1 1137 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝐴 ∈ Fin)
1817ad2antlr 727 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝐴 ∈ Fin)
19 simpl 482 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧𝐴)
2019adantr 480 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝑧𝐴)
21 vex 3484 . . . . . . . 8 𝑧 ∈ V
2220, 21jctil 519 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 ∈ V ∧ 𝑧𝐴))
23 simplr3 1218 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
24 fsumsplitsnun 15791 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
2518, 22, 23, 24syl3anc 1373 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
2625oveq1d 7446 . . . . 5 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
27 ralunb 4197 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
28 simpl 482 . . . . . . . . . . . . . 14 ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘𝐴 𝐵 ∈ ℤ)
2927, 28sylbi 217 . . . . . . . . . . . . 13 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘𝐴 𝐵 ∈ ℤ)
30 fsumzcl2 15775 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
3129, 30sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
32313adant2 1132 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
3332adantl 481 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → Σ𝑘𝐴 𝐵 ∈ ℤ)
3433zred 12722 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → Σ𝑘𝐴 𝐵 ∈ ℝ)
35 modfsummodslem1 15828 . . . . . . . . . . . 12 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
36353ad2ant3 1136 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3736adantl 481 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3837zred 12722 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧 / 𝑘𝐵 ∈ ℝ)
39 nnrp 13046 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
40393ad2ant2 1135 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑁 ∈ ℝ+)
4140adantl 481 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑁 ∈ ℝ+)
42 modaddabs 13949 . . . . . . . . 9 ((Σ𝑘𝐴 𝐵 ∈ ℝ ∧ 𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
4334, 38, 41, 42syl3anc 1373 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
4443eqcomd 2743 . . . . . . 7 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
4544adantr 480 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
46 simpr 484 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
4735zred 12722 . . . . . . . . . . . . 13 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℝ)
48473ad2ant3 1136 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℝ)
4948adantl 481 . . . . . . . . . . 11 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5049, 41jca 511 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) → (𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5150adantr 480 . . . . . . . . 9 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
52 modabs2 13945 . . . . . . . . . 10 ((𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
5352eqcomd 2743 . . . . . . . . 9 ((𝑧 / 𝑘𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑧 / 𝑘𝐵 mod 𝑁) = ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁))
5451, 53syl 17 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 / 𝑘𝐵 mod 𝑁) = ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁))
5546, 54oveq12d 7449 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)))
5655oveq1d 7446 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
5745, 56eqtrd 2777 . . . . 5 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
58 zmodcl 13931 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℕ0)
5958nn0zd 12639 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℤ)
6059expcom 413 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝐵 ∈ ℤ → (𝐵 mod 𝑁) ∈ ℤ))
6160ralimdv 3169 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (∀𝑘𝐴 𝐵 ∈ ℤ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6261com12 32 . . . . . . . . . . . . . 14 (∀𝑘𝐴 𝐵 ∈ ℤ → (𝑁 ∈ ℕ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6362adantr 480 . . . . . . . . . . . . 13 ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (𝑁 ∈ ℕ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6427, 63sylbi 217 . . . . . . . . . . . 12 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → (𝑁 ∈ ℕ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
6564impcom 407 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
66653adant1 1131 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
6717, 66jca 511 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
68 fsumzcl2 15775 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
6968zred 12722 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ)
7067, 69syl 17 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ)
7170ad2antlr 727 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ)
7235anim1i 615 . . . . . . . . . . . 12 ((∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ))
7372ancoms 458 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ))
74 zmodcl 13931 . . . . . . . . . . 11 ((𝑧 / 𝑘𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
7675nn0red 12588 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ)
77763adant1 1131 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ)
7877ad2antlr 727 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ)
7940ad2antlr 727 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝑁 ∈ ℝ+)
80 modaddabs 13949 . . . . . . 7 ((Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℝ ∧ (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
8171, 78, 79, 80syl3anc 1373 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
8260ralimdv 3169 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ))
8382imp 406 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
84833adant1 1131 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
8584ad2antlr 727 . . . . . . . . . 10 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
86 fsumsplitsnun 15791 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
8718, 22, 85, 86syl3anc 1373 . . . . . . . . 9 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
88 csbov1g 7478 . . . . . . . . . . 11 (𝑧 ∈ V → 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
8921, 88mp1i 13 . . . . . . . . . 10 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
9089oveq2d 7447 . . . . . . . . 9 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)))
9187, 90eqtrd 2777 . . . . . . . 8 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)))
9291eqcomd 2743 . . . . . . 7 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁))
9392oveq1d 7446 . . . . . 6 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
9481, 93eqtrd 2777 . . . . 5 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
9526, 57, 943eqtrd 2781 . . . 4 (((𝑧𝐴 ∧ (𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)) ∧ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
9695exp31 419 . . 3 (𝑧𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
9716, 96sylbir 235 . 2 𝑧𝐴 → ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
9815, 97pm2.61i 182 1 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wnel 3046  wral 3061  Vcvv 3480  csb 3899  cun 3949  wss 3951  {csn 4626  (class class class)co 7431  Fincfn 8985  cr 11154   + caddc 11158  cn 12266  0cn0 12526  cz 12613  +crp 13034   mod cmo 13909  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  modfsummod  15830
  Copyright terms: Public domain W3C validator