| Metamath
Proof Explorer Theorem List (p. 158 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-sum 15701* | Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers) by summo 15731. Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 15896). (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | ||
| Theorem | sumex 15702 | A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V | ||
| Theorem | sumeq1 15703 | Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | nfsum1 15704 | Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ Ⅎ𝑘Σ𝑘 ∈ 𝐴 𝐵 | ||
| Theorem | nfsum 15705* | Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘 ∈ 𝐴𝐵. Version of nfsum 15705 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 11-Dec-2005.) (Revised by GG, 24-Feb-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 | ||
| Theorem | sumeq2w 15706 | Equality theorem for sum, when the class expressions 𝐵 and 𝐶 are equal everywhere. Proved using only Extensionality. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ (∀𝑘 𝐵 = 𝐶 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | sumeq2ii 15707* | Equality theorem for sum, with the class expressions 𝐵 and 𝐶 guarded by I to be always sets. (Contributed by Mario Carneiro, 13-Jun-2019.) |
| ⊢ (∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | sumeq2 15708* | Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | cbvsum 15709* | Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) & ⊢ Ⅎ𝑘𝐵 & ⊢ Ⅎ𝑗𝐶 ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 | ||
| Theorem | cbvsumv 15710* | Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 | ||
| Theorem | sumeq1i 15711 | Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 | ||
| Theorem | sumeq2i 15712* | Equality inference for sum. (Contributed by NM, 3-Dec-2005.) |
| ⊢ (𝑘 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 | ||
| Theorem | sumeq12i 15713* | Equality inference for sum. (Contributed by FL, 10-Dec-2006.) |
| ⊢ 𝐴 = 𝐵 & ⊢ (𝑘 ∈ 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 | ||
| Theorem | sumeq1d 15714 | Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | sumeq2d 15715* | Equality deduction for sum. Note that unlike sumeq2dv 15716, 𝑘 may occur in 𝜑. (Contributed by NM, 1-Nov-2005.) |
| ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | sumeq2dv 15716* | Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | sumeq2sdv 15717* | Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) Avoid axioms. (Revised by GG, 14-Aug-2025.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | sumeq2sdvOLD 15718* | Obsolete version of sumeq2sdv 15717 as of 14-Aug-2025. (Contributed by NM, 3-Jan-2006.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) | ||
| Theorem | 2sumeq2dv 15719* | Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐷) | ||
| Theorem | sumeq12dv 15720* | Equality deduction for sum. (Contributed by NM, 1-Dec-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) | ||
| Theorem | sumeq12rdv 15721* | Equality deduction for sum. (Contributed by NM, 1-Dec-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) | ||
| Theorem | sum2id 15722* | The second class argument to a sum can be chosen so that it is always a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 ( I ‘𝐵) | ||
| Theorem | sumfc 15723* | A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ Σ𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = Σ𝑘 ∈ 𝐴 𝐵 | ||
| Theorem | fz1f1o 15724* | A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | ||
| Theorem | sumrblem 15725* | Lemma for sumrb 15727. (Contributed by Mario Carneiro, 12-Aug-2013.) |
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) | ||
| Theorem | fsumcvg 15726* | The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) | ||
| Theorem | sumrb 15727* | Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 9-Apr-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) | ||
| Theorem | summolem3 15728* | Lemma for summo 15731. (Contributed by Mario Carneiro, 29-Mar-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ⦋(𝐾‘𝑛) / 𝑘⦌𝐵) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) | ||
| Theorem | summolem2a 15729* | Lemma for summo 15731. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ⦋(𝐾‘𝑛) / 𝑘⦌𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑓:(1...𝑁)–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁)) | ||
| Theorem | summolem2 15730* | Lemma for summo 15731. (Contributed by Mario Carneiro, 3-Apr-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) | ||
| Theorem | summo 15731* | A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) ⇒ ⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) | ||
| Theorem | zsum 15732* | Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) | ||
| Theorem | isum 15733* | Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) | ||
| Theorem | fsum 15734* | The value of a sum over a nonempty finite set. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀)) | ||
| Theorem | sum0 15735 | Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 | ||
| Theorem | sumz 15736* | Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) | ||
| Theorem | fsumf1o 15737* | Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.) |
| ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑛 ∈ 𝐶 𝐷) | ||
| Theorem | sumss 15738* | Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → 𝐵 ⊆ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | fsumss 15739* | Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | sumss2 15740* | Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ≥‘𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) | ||
| Theorem | fsumcvg2 15741* | The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) | ||
| Theorem | fsumsers 15742* | Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 21-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) | ||
| Theorem | fsumcvg3 15743* | A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | fsumser 15744* | A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 15761 and fsump1i 15783, which should make our notation clear and from which, along with closure fsumcl 15747, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 21-Apr-2014.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) | ||
| Theorem | fsumcl2lem 15745* | - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
| Theorem | fsumcllem 15746* | - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
| Theorem | fsumcl 15747* | Closure of a finite sum of complex numbers 𝐴(𝑘). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | ||
| Theorem | fsumrecl 15748* | Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) | ||
| Theorem | fsumzcl 15749* | Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) | ||
| Theorem | fsumnn0cl 15750* | Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℕ0) | ||
| Theorem | fsumrpcl 15751* | Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ+) | ||
| Theorem | fsumclf 15752* | Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsumcl 15747 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | ||
| Theorem | fsumzcl2 15753* | A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) | ||
| Theorem | fsumadd 15754* | The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) | ||
| Theorem | fsumsplit 15755* | Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.) |
| ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) | ||
| Theorem | fsumsplitf 15756* | Split a sum into two parts. A version of fsumsplit 15755 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) | ||
| Theorem | sumsnf 15757* | A sum of a singleton is the term. A version of sumsn 15760 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝐵 & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) | ||
| Theorem | fsumsplitsn 15758* | Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐷 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) | ||
| Theorem | fsumsplit1 15759* | Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐷 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝑘 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) | ||
| Theorem | sumsn 15760* | A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.) |
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) | ||
| Theorem | fsum1 15761* | The finite sum of 𝐴(𝑘) from 𝑘 = 𝑀 to 𝑀 (i.e. a sum with only one term) is 𝐵 i.e. 𝐴(𝑀). (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.) |
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵) | ||
| Theorem | sumpr 15762* | A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
| ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) | ||
| Theorem | sumtp 15763* | A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.) |
| ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) & ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) & ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) & ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) | ||
| Theorem | sumsns 15764* | A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ⦋𝑀 / 𝑘⦌𝐴) | ||
| Theorem | fsumm1 15765* | Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) | ||
| Theorem | fzosump1 15766* | Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀..^𝑁)𝐴 + 𝐵)) | ||
| Theorem | fsum1p 15767* | Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) | ||
| Theorem | fsummsnunz 15768* | A finite sum all of whose summands are integers is itself an integer (case where the summation set is the union of a finite set and a singleton). (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) | ||
| Theorem | fsumsplitsnun 15769* | Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘 ∈ 𝐴 𝐵 + ⦋𝑍 / 𝑘⦌𝐵)) | ||
| Theorem | fsump1 15770* | The addition of the next term in a finite sum of 𝐴(𝑘) is the current term plus 𝐵 i.e. 𝐴(𝑁 + 1). (Contributed by NM, 4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.) (Proof shortened by SN, 22-Mar-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝑁)𝐴 + 𝐵)) | ||
| Theorem | isumclim 15771* | An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = 𝐵) | ||
| Theorem | isumclim2 15772* | A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) | ||
| Theorem | isumclim3 15773* | The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) | ||
| Theorem | sumnul 15774* | The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ∅) | ||
| Theorem | isumcl 15775* | The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) | ||
| Theorem | isummulc2 15776* | An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) | ||
| Theorem | isummulc1 15777* | An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 · 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 · 𝐵)) | ||
| Theorem | isumdivc 15778* | An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 / 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 / 𝐵)) | ||
| Theorem | isumrecl 15779* | The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℝ) | ||
| Theorem | isumge0 15780* | An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝑍 𝐴) | ||
| Theorem | isumadd 15781* | Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) | ||
| Theorem | sumsplit 15782* | Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = if(𝑘 ∈ 𝐵, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) | ||
| Theorem | fsump1i 15783* | Optimized version of fsump1 15770 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝐾 + 1) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) & ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) | ||
| Theorem | fsum2dlem 15784* | Lemma for fsum2d 15785- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) |
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥) & ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴) & ⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) | ||
| Theorem | fsum2d 15785* | Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) | ||
| Theorem | fsumxp 15786* | Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014.) |
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ (𝐴 × 𝐵)𝐷) | ||
| Theorem | fsumcnv 15787* | Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.) |
| ⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷) & ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 𝐵 = Σ𝑦 ∈ ◡ 𝐴𝐶) | ||
| Theorem | fsumcom2 15788* | Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐸 = Σ𝑘 ∈ 𝐶 Σ𝑗 ∈ 𝐷 𝐸) | ||
| Theorem | fsumcom 15789* | Interchange order of summation. (Contributed by NM, 15-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝐵 Σ𝑗 ∈ 𝐴 𝐶) | ||
| Theorem | fsum0diaglem 15790* | Lemma for fsum0diag 15791. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) |
| ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) | ||
| Theorem | fsum0diag 15791* | Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) | ||
| Theorem | mptfzshft 15792* | 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft 15794. (Contributed by AV, 24-Aug-2019.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) | ||
| Theorem | fsumrev 15793* | Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) | ||
| Theorem | fsumshft 15794* | Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) | ||
| Theorem | fsumshftm 15795* | Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) | ||
| Theorem | fsumrev2 15796* | Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.) |
| ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | ||
| Theorem | fsum0diag2 15797* | Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by Mario Carneiro, 21-Jul-2014.) |
| ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴) & ⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) | ||
| Theorem | fsummulc2 15798* | A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) | ||
| Theorem | fsummulc1 15799* | A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) | ||
| Theorem | fsumdivc 15800* | A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 / 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |