| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version | ||
| Description: Special case related to rspsbc 3845. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| Ref | Expression |
|---|---|
| rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsbc 3845 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
| 2 | sbcel1g 4382 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
| 3 | 1, 2 | sylibd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: el2mpocsbcl 8067 mptnn0fsupp 13969 mptnn0fsuppr 13971 fsumzcl2 15712 fsummsnunz 15727 fsumsplitsnun 15728 modfsummodslem1 15765 fprodmodd 15970 sumeven 16364 sumodd 16365 gsummpt1n0 19902 gsummptnn0fz 19923 telgsumfzslem 19925 telgsumfzs 19926 telgsums 19930 mptscmfsupp0 20840 coe1fzgsumdlem 22197 gsummoncoe1 22202 evl1gsumdlem 22250 madugsum 22537 iunmbl2 25465 gsumvsca1 33186 gsumvsca2 33187 rmfsupp2 33196 esum2dlem 34089 esumiun 34091 evl1gprodd 42112 idomnnzgmulnz 42128 deg1gprod 42135 f1o2d2 42228 iblsplitf 45975 fsummsndifre 47377 fsumsplitsndif 47378 fsummmodsndifre 47379 fsummmodsnunz 47380 |
| Copyright terms: Public domain | W3C validator |