| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version | ||
| Description: Special case related to rspsbc 3826. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| Ref | Expression |
|---|---|
| rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsbc 3826 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
| 2 | sbcel1g 4365 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
| 3 | 1, 2 | sylibd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 [wsbc 3737 ⦋csb 3846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: el2mpocsbcl 8024 mptnn0fsupp 13911 mptnn0fsuppr 13913 fsumzcl2 15653 fsummsnunz 15668 fsumsplitsnun 15669 modfsummodslem1 15706 fprodmodd 15911 sumeven 16305 sumodd 16306 gsummpt1n0 19885 gsummptnn0fz 19906 telgsumfzslem 19908 telgsumfzs 19909 telgsums 19913 mptscmfsupp0 20869 coe1fzgsumdlem 22238 gsummoncoe1 22243 evl1gsumdlem 22291 madugsum 22578 iunmbl2 25505 gsummptfzsplitra 33069 gsummptfzsplitla 33070 gsummulsubdishift1s 33081 gsummulsubdishift2s 33082 gsumvsca1 33236 gsumvsca2 33237 rmfsupp2 33248 esum2dlem 34177 esumiun 34179 evl1gprodd 42283 idomnnzgmulnz 42299 deg1gprod 42306 f1o2d2 42404 iblsplitf 46130 fsummsndifre 47534 fsumsplitsndif 47535 fsummmodsndifre 47536 fsummmodsnunz 47537 |
| Copyright terms: Public domain | W3C validator |