![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version |
Description: Special case related to rspsbc 3760. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3760 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
2 | sbcel1g 4246 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
3 | 1, 2 | sylibd 231 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
4 | 3 | imp 398 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2051 ∀wral 3083 [wsbc 3676 ⦋csb 3781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-nul 4174 |
This theorem is referenced by: el2mpocsbcl 7587 mptnn0fsupp 13179 mptnn0fsuppr 13181 fsumzcl2 14954 fsummsnunz 14968 fsumsplitsnun 14969 modfsummodslem1 15006 fprodmodd 15210 sumeven 15597 sumodd 15598 gsummpt1n0 18851 gsummptnn0fz 18869 telgsumfzslem 18871 telgsumfzs 18872 telgsums 18876 mptscmfsupp0 19434 coe1fzgsumdlem 20188 gsummoncoe1 20191 evl1gsumdlem 20237 madugsum 20972 iunmbl2 23877 gsumvsca1 30558 gsumvsca2 30559 rmfsupp2 30578 esum2dlem 31028 esumiun 31030 iblsplitf 41715 fsummsndifre 42968 fsumsplitsndif 42969 fsummmodsndifre 42970 fsummmodsnunz 42971 |
Copyright terms: Public domain | W3C validator |