| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version | ||
| Description: Special case related to rspsbc 3839. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| Ref | Expression |
|---|---|
| rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsbc 3839 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
| 2 | sbcel1g 4375 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
| 3 | 1, 2 | sylibd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 [wsbc 3750 ⦋csb 3859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: el2mpocsbcl 8041 mptnn0fsupp 13938 mptnn0fsuppr 13940 fsumzcl2 15681 fsummsnunz 15696 fsumsplitsnun 15697 modfsummodslem1 15734 fprodmodd 15939 sumeven 16333 sumodd 16334 gsummpt1n0 19871 gsummptnn0fz 19892 telgsumfzslem 19894 telgsumfzs 19895 telgsums 19899 mptscmfsupp0 20809 coe1fzgsumdlem 22166 gsummoncoe1 22171 evl1gsumdlem 22219 madugsum 22506 iunmbl2 25434 gsumvsca1 33152 gsumvsca2 33153 rmfsupp2 33162 esum2dlem 34055 esumiun 34057 evl1gprodd 42078 idomnnzgmulnz 42094 deg1gprod 42101 f1o2d2 42194 iblsplitf 45941 fsummsndifre 47346 fsumsplitsndif 47347 fsummmodsndifre 47348 fsummmodsnunz 47349 |
| Copyright terms: Public domain | W3C validator |