| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version | ||
| Description: Special case related to rspsbc 3833. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| Ref | Expression |
|---|---|
| rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsbc 3833 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
| 2 | sbcel1g 4369 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
| 3 | 1, 2 | sylibd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 [wsbc 3744 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: el2mpocsbcl 8025 mptnn0fsupp 13923 mptnn0fsuppr 13925 fsumzcl2 15665 fsummsnunz 15680 fsumsplitsnun 15681 modfsummodslem1 15718 fprodmodd 15923 sumeven 16317 sumodd 16318 gsummpt1n0 19863 gsummptnn0fz 19884 telgsumfzslem 19886 telgsumfzs 19887 telgsums 19891 mptscmfsupp0 20849 coe1fzgsumdlem 22207 gsummoncoe1 22212 evl1gsumdlem 22260 madugsum 22547 iunmbl2 25475 gsumvsca1 33187 gsumvsca2 33188 rmfsupp2 33197 esum2dlem 34078 esumiun 34080 evl1gprodd 42110 idomnnzgmulnz 42126 deg1gprod 42133 f1o2d2 42226 iblsplitf 45971 fsummsndifre 47376 fsumsplitsndif 47377 fsummmodsndifre 47378 fsummmodsnunz 47379 |
| Copyright terms: Public domain | W3C validator |