Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version |
Description: Special case related to rspsbc 3812. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3812 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
2 | sbcel1g 4347 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
3 | 1, 2 | sylibd 238 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-nul 4257 |
This theorem is referenced by: el2mpocsbcl 7925 mptnn0fsupp 13717 mptnn0fsuppr 13719 fsumzcl2 15451 fsummsnunz 15466 fsumsplitsnun 15467 modfsummodslem1 15504 fprodmodd 15707 sumeven 16096 sumodd 16097 gsummpt1n0 19566 gsummptnn0fz 19587 telgsumfzslem 19589 telgsumfzs 19590 telgsums 19594 mptscmfsupp0 20188 coe1fzgsumdlem 21472 gsummoncoe1 21475 evl1gsumdlem 21522 madugsum 21792 iunmbl2 24721 gsumvsca1 31479 gsumvsca2 31480 rmfsupp2 31492 esum2dlem 32060 esumiun 32062 iblsplitf 43511 fsummsndifre 44824 fsumsplitsndif 44825 fsummmodsndifre 44826 fsummmodsnunz 44827 |
Copyright terms: Public domain | W3C validator |