MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcsbela Structured version   Visualization version   GIF version

Theorem rspcsbela 4369
Description: Special case related to rspsbc 3812. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
Assertion
Ref Expression
rspcsbela ((𝐴𝐵 ∧ ∀𝑥𝐵 𝐶𝐷) → 𝐴 / 𝑥𝐶𝐷)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem rspcsbela
StepHypRef Expression
1 rspsbc 3812 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝐶𝐷[𝐴 / 𝑥]𝐶𝐷))
2 sbcel1g 4347 . . 3 (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐷))
31, 2sylibd 238 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝐶𝐷𝐴 / 𝑥𝐶𝐷))
43imp 407 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝐶𝐷) → 𝐴 / 𝑥𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-nul 4257
This theorem is referenced by:  el2mpocsbcl  7925  mptnn0fsupp  13717  mptnn0fsuppr  13719  fsumzcl2  15451  fsummsnunz  15466  fsumsplitsnun  15467  modfsummodslem1  15504  fprodmodd  15707  sumeven  16096  sumodd  16097  gsummpt1n0  19566  gsummptnn0fz  19587  telgsumfzslem  19589  telgsumfzs  19590  telgsums  19594  mptscmfsupp0  20188  coe1fzgsumdlem  21472  gsummoncoe1  21475  evl1gsumdlem  21522  madugsum  21792  iunmbl2  24721  gsumvsca1  31479  gsumvsca2  31480  rmfsupp2  31492  esum2dlem  32060  esumiun  32062  iblsplitf  43511  fsummsndifre  44824  fsumsplitsndif  44825  fsummmodsndifre  44826  fsummmodsnunz  44827
  Copyright terms: Public domain W3C validator