Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version |
Description: Special case related to rspsbc 3808. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3808 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
2 | sbcel1g 4344 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
3 | 1, 2 | sylibd 238 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-nul 4254 |
This theorem is referenced by: el2mpocsbcl 7896 mptnn0fsupp 13645 mptnn0fsuppr 13647 fsumzcl2 15379 fsummsnunz 15394 fsumsplitsnun 15395 modfsummodslem1 15432 fprodmodd 15635 sumeven 16024 sumodd 16025 gsummpt1n0 19481 gsummptnn0fz 19502 telgsumfzslem 19504 telgsumfzs 19505 telgsums 19509 mptscmfsupp0 20103 coe1fzgsumdlem 21382 gsummoncoe1 21385 evl1gsumdlem 21432 madugsum 21700 iunmbl2 24626 gsumvsca1 31381 gsumvsca2 31382 rmfsupp2 31394 esum2dlem 31960 esumiun 31962 iblsplitf 43401 fsummsndifre 44712 fsumsplitsndif 44713 fsummmodsndifre 44714 fsummmodsnunz 44715 |
Copyright terms: Public domain | W3C validator |