| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version | ||
| Description: Special case related to rspsbc 3842. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| Ref | Expression |
|---|---|
| rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsbc 3842 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
| 2 | sbcel1g 4379 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
| 3 | 1, 2 | sylibd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 [wsbc 3753 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: el2mpocsbcl 8064 mptnn0fsupp 13962 mptnn0fsuppr 13964 fsumzcl2 15705 fsummsnunz 15720 fsumsplitsnun 15721 modfsummodslem1 15758 fprodmodd 15963 sumeven 16357 sumodd 16358 gsummpt1n0 19895 gsummptnn0fz 19916 telgsumfzslem 19918 telgsumfzs 19919 telgsums 19923 mptscmfsupp0 20833 coe1fzgsumdlem 22190 gsummoncoe1 22195 evl1gsumdlem 22243 madugsum 22530 iunmbl2 25458 gsumvsca1 33179 gsumvsca2 33180 rmfsupp2 33189 esum2dlem 34082 esumiun 34084 evl1gprodd 42105 idomnnzgmulnz 42121 deg1gprod 42128 f1o2d2 42221 iblsplitf 45968 fsummsndifre 47373 fsumsplitsndif 47374 fsummmodsndifre 47375 fsummmodsnunz 47376 |
| Copyright terms: Public domain | W3C validator |