![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version |
Description: Special case related to rspsbc 3887. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3887 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
2 | sbcel1g 4421 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
3 | 1, 2 | sylibd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 [wsbc 3790 ⦋csb 3907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-nul 4339 |
This theorem is referenced by: el2mpocsbcl 8108 mptnn0fsupp 14034 mptnn0fsuppr 14036 fsumzcl2 15771 fsummsnunz 15786 fsumsplitsnun 15787 modfsummodslem1 15824 fprodmodd 16029 sumeven 16420 sumodd 16421 gsummpt1n0 19997 gsummptnn0fz 20018 telgsumfzslem 20020 telgsumfzs 20021 telgsums 20025 mptscmfsupp0 20941 coe1fzgsumdlem 22322 gsummoncoe1 22327 evl1gsumdlem 22375 madugsum 22664 iunmbl2 25605 gsumvsca1 33214 gsumvsca2 33215 rmfsupp2 33227 esum2dlem 34072 esumiun 34074 evl1gprodd 42098 idomnnzgmulnz 42114 deg1gprod 42121 f1o2d2 42252 iblsplitf 45925 fsummsndifre 47296 fsumsplitsndif 47297 fsummmodsndifre 47298 fsummmodsnunz 47299 |
Copyright terms: Public domain | W3C validator |