Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version |
Description: Special case related to rspsbc 3821. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3821 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
2 | sbcel1g 4357 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
3 | 1, 2 | sylibd 238 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ∀wral 3061 [wsbc 3725 ⦋csb 3841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-nul 4267 |
This theorem is referenced by: el2mpocsbcl 7971 mptnn0fsupp 13796 mptnn0fsuppr 13798 fsumzcl2 15527 fsummsnunz 15542 fsumsplitsnun 15543 modfsummodslem1 15580 fprodmodd 15783 sumeven 16172 sumodd 16173 gsummpt1n0 19638 gsummptnn0fz 19659 telgsumfzslem 19661 telgsumfzs 19662 telgsums 19666 mptscmfsupp0 20268 coe1fzgsumdlem 21552 gsummoncoe1 21555 evl1gsumdlem 21602 madugsum 21872 iunmbl2 24801 gsumvsca1 31610 gsumvsca2 31611 rmfsupp2 31623 esum2dlem 32196 esumiun 32198 iblsplitf 43766 fsummsndifre 45094 fsumsplitsndif 45095 fsummmodsndifre 45096 fsummmodsnunz 45097 |
Copyright terms: Public domain | W3C validator |