| Step | Hyp | Ref
| Expression |
| 1 | | df-mpt 5206 |
. 2
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} |
| 2 | | df-mpt 5206 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
| 3 | | df-mpt 5206 |
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} |
| 4 | 2, 3 | uneq12i 4146 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∪ (𝑥 ∈ 𝐵 ↦ 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) |
| 5 | | elun 4133 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 6 | 5 | anbi1i 624 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 = 𝐶)) |
| 7 | | andir 1010 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))) |
| 8 | 6, 7 | bitri 275 |
. . . . 5
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))) |
| 9 | 8 | opabbii 5190 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))} |
| 10 | | unopab 5204 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))} |
| 11 | 9, 10 | eqtr4i 2760 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) |
| 12 | 4, 11 | eqtr4i 2760 |
. 2
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∪ (𝑥 ∈ 𝐵 ↦ 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} |
| 13 | 1, 12 | eqtr4i 2760 |
1
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ∪ (𝑥 ∈ 𝐵 ↦ 𝐶)) |