MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptun Structured version   Visualization version   GIF version

Theorem mptun 6722
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptun (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))

Proof of Theorem mptun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5235 . 2 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)}
2 df-mpt 5235 . . . 4 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
3 df-mpt 5235 . . . 4 (𝑥𝐵𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}
42, 3uneq12i 4179 . . 3 ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
5 elun 4166 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑦 = 𝐶))
7 andir 1011 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶)))
86, 7bitri 275 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶)))
98opabbii 5218 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶))}
10 unopab 5233 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶))}
119, 10eqtr4i 2768 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
124, 11eqtr4i 2768 . 2 ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)}
131, 12eqtr4i 2768 1 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 848   = wceq 1539  wcel 2108  cun 3964  {copab 5213  cmpt 5234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-un 3971  df-opab 5214  df-mpt 5235
This theorem is referenced by:  partfun  6723  fmptap  7197  fmptapd  7198  fmptunsnop  32729  esumrnmpt2  34063  ptrest  37620  fsuppssind  42596
  Copyright terms: Public domain W3C validator